perf: max_token count;feat: support resoner output;fix: member scroll (#3681)

* perf: supplement assistant empty response

* check array

* perf: max_token count

* feat: support resoner output

* member scroll

* update provider order

* i18n
This commit is contained in:
Archer 2025-02-01 18:04:44 +08:00 committed by archer
parent 9e0379382f
commit 54defd8a3c
No known key found for this signature in database
GPG Key ID: 4446499B846D4A9E
46 changed files with 462 additions and 266 deletions

View File

@ -31,9 +31,14 @@ curl --location --request POST 'https://{{host}}/api/admin/initv4820' \
## 完整更新内容
1. 新增 - 可视化模型参数配置。预设超过 100 个模型配置。同时支持所有类型模型的一键测试。(预计下个版本会完全支持在页面上配置渠道)。
2. 新增 - 使用记录导出和仪表盘。
3. 新增 - markdown 语法扩展,支持音视频(代码块 audio 和 video
4. 优化 - 页面组件抽离,减少页面组件路由。
5. 优化 - 全文检索,忽略大小写。
6. 优化 - 问答生成和增强索引改成流输出,避免部分模型超时。
7. 优化 - 自动给 assistant 空 content补充 null同时合并连续的 text assistant避免部分模型抛错。
2. 新增 - DeepSeek resoner 模型支持输出思考过程。
3. 新增 - 使用记录导出和仪表盘。
4. 新增 - markdown 语法扩展,支持音视频(代码块 audio 和 video
5. 新增 - 调整 max_tokens 计算逻辑。优先保证 max_tokens 为配置值,如超出最大上下文,则减少历史记录。例如:如果申请 8000 的 max_tokens则上下文长度会减少 8000。
6. 优化 - 问题优化增加上下文过滤,避免超出上下文。
7. 优化 - 页面组件抽离,减少页面组件路由。
8. 优化 - 全文检索,忽略大小写。
9. 优化 - 问答生成和增强索引改成流输出,避免部分模型超时。
10. 优化 - 自动给 assistant 空 content补充 null同时合并连续的 text assistant避免部分模型抛错。
11. 优化 - 调整图片 Host 取消上传时补充 FE_DOMAIN改成发送对话前
12. 修复 - 部分场景成员列表无法触底加载。

View File

@ -29,10 +29,11 @@ export type LLMModelItemType = PriceType &
maxContext: number;
maxResponse: number;
quoteMaxToken: number;
maxTemperature: number;
maxTemperature?: number;
censor?: boolean;
vision?: boolean;
reasoning?: boolean;
// diff function model
datasetProcess?: boolean; // dataset

View File

@ -11,8 +11,8 @@ export type ModelProviderIdType =
| 'AliCloud'
| 'Qwen'
| 'Doubao'
| 'ChatGLM'
| 'DeepSeek'
| 'ChatGLM'
| 'Ernie'
| 'Moonshot'
| 'MiniMax'

View File

@ -117,6 +117,7 @@ export type SettingAIDataType = {
isResponseAnswerText?: boolean;
maxHistories?: number;
[NodeInputKeyEnum.aiChatVision]?: boolean; // Is open vision mode
[NodeInputKeyEnum.aiChatReasoning]?: boolean; // Is open reasoning mode
};
// variable

View File

@ -25,7 +25,8 @@ export enum ChatItemValueTypeEnum {
text = 'text',
file = 'file',
tool = 'tool',
interactive = 'interactive'
interactive = 'interactive',
reasoning = 'reasoning'
}
export enum ChatSourceEnum {

View File

@ -70,14 +70,23 @@ export type SystemChatItemType = {
obj: ChatRoleEnum.System;
value: SystemChatItemValueItemType[];
};
export type AIChatItemValueItemType = {
type: ChatItemValueTypeEnum.text | ChatItemValueTypeEnum.tool | ChatItemValueTypeEnum.interactive;
type:
| ChatItemValueTypeEnum.text
| ChatItemValueTypeEnum.reasoning
| ChatItemValueTypeEnum.tool
| ChatItemValueTypeEnum.interactive;
text?: {
content: string;
};
reasoning?: {
content: string;
};
tools?: ToolModuleResponseItemType[];
interactive?: WorkflowInteractiveResponseType;
};
export type AIChatItemType = {
obj: ChatRoleEnum.AI;
value: AIChatItemValueItemType[];

View File

@ -141,6 +141,7 @@ export enum NodeInputKeyEnum {
aiChatDatasetQuote = 'quoteQA',
aiChatVision = 'aiChatVision',
stringQuoteText = 'stringQuoteText',
aiChatReasoning = 'aiChatReasoning',
// dataset
datasetSelectList = 'datasets',
@ -220,7 +221,8 @@ export enum NodeOutputKeyEnum {
// common
userChatInput = 'userChatInput',
history = 'history',
answerText = 'answerText', // module answer. the value will be show and save to history
answerText = 'answerText', // node answer. the value will be show and save to history
reasoningText = 'reasoningText', // node reasoning. the value will be show but not save to history
success = 'success',
failed = 'failed',
error = 'error',

View File

@ -220,6 +220,7 @@ export type AIChatNodeProps = {
[NodeInputKeyEnum.aiChatMaxToken]?: number;
[NodeInputKeyEnum.aiChatIsResponseText]: boolean;
[NodeInputKeyEnum.aiChatVision]?: boolean;
[NodeInputKeyEnum.aiChatReasoning]?: boolean;
[NodeInputKeyEnum.aiChatQuoteRole]?: AiChatQuoteRoleType;
[NodeInputKeyEnum.aiChatQuoteTemplate]?: string;

View File

@ -364,12 +364,14 @@ export function replaceEditorVariable({
export const textAdaptGptResponse = ({
text,
reasoning_content,
model = '',
finish_reason = null,
extraData = {}
}: {
model?: string;
text: string | null;
text?: string | null;
reasoning_content?: string | null;
finish_reason?: null | 'stop';
extraData?: Object;
}) => {
@ -381,10 +383,11 @@ export const textAdaptGptResponse = ({
model,
choices: [
{
delta:
text === null
? {}
: { role: ChatCompletionRequestMessageRoleEnum.Assistant, content: text },
delta: {
role: ChatCompletionRequestMessageRoleEnum.Assistant,
content: text,
...(reasoning_content && { reasoning_content })
},
index: 0,
finish_reason
}

View File

@ -63,14 +63,14 @@ export const AiChatModule: FlowNodeTemplateType = {
key: NodeInputKeyEnum.aiChatTemperature,
renderTypeList: [FlowNodeInputTypeEnum.hidden], // Set in the pop-up window
label: '',
value: 0,
value: undefined,
valueType: WorkflowIOValueTypeEnum.number
},
{
key: NodeInputKeyEnum.aiChatMaxToken,
renderTypeList: [FlowNodeInputTypeEnum.hidden], // Set in the pop-up window
label: '',
value: 2000,
value: undefined,
valueType: WorkflowIOValueTypeEnum.number
},
@ -91,6 +91,13 @@ export const AiChatModule: FlowNodeTemplateType = {
valueType: WorkflowIOValueTypeEnum.boolean,
value: true
},
{
key: NodeInputKeyEnum.aiChatReasoning,
renderTypeList: [FlowNodeInputTypeEnum.hidden],
label: '',
valueType: WorkflowIOValueTypeEnum.boolean,
value: true
},
// settings modal ---
{
...Input_Template_System_Prompt,

View File

@ -43,14 +43,14 @@ export const ToolModule: FlowNodeTemplateType = {
key: NodeInputKeyEnum.aiChatTemperature,
renderTypeList: [FlowNodeInputTypeEnum.hidden], // Set in the pop-up window
label: '',
value: 0,
value: undefined,
valueType: WorkflowIOValueTypeEnum.number
},
{
key: NodeInputKeyEnum.aiChatMaxToken,
renderTypeList: [FlowNodeInputTypeEnum.hidden], // Set in the pop-up window
label: '',
value: 2000,
value: undefined,
valueType: WorkflowIOValueTypeEnum.number
},
{

View File

@ -40,7 +40,7 @@ export async function uploadMongoImg({
expiredTime: forever ? undefined : addHours(new Date(), 1)
});
return `${process.env.FE_DOMAIN || ''}${process.env.NEXT_PUBLIC_BASE_URL || ''}${imageBaseUrl}${String(_id)}.${extension}`;
return `${process.env.NEXT_PUBLIC_BASE_URL || ''}${imageBaseUrl}${String(_id)}.${extension}`;
}
const getIdFromPath = (path?: string) => {

View File

@ -27,8 +27,9 @@
"maxContext": 64000,
"maxResponse": 4096,
"quoteMaxToken": 60000,
"maxTemperature": 1.5,
"maxTemperature": null,
"vision": false,
"reasoning": true,
"toolChoice": false,
"functionCall": false,
"defaultSystemChatPrompt": "",
@ -39,11 +40,9 @@
"usedInQueryExtension": true,
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {
"temperature": null
},
"defaultConfig": {},
"fieldMap": {},
"type": "llm"
}
]
}
}

View File

@ -50,10 +50,10 @@
"maxContext": 128000,
"maxResponse": 4000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"maxTemperature": null,
"vision": false,
"toolChoice": false,
"functionCall": true,
"functionCall": false,
"defaultSystemChatPrompt": "",
"datasetProcess": true,
"usedInClassify": true,
@ -63,8 +63,10 @@
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {
"temperature": 1,
"max_tokens": null
"stream": false
},
"fieldMap": {
"max_tokens": "max_completion_tokens"
},
"type": "llm"
},
@ -74,10 +76,10 @@
"maxContext": 128000,
"maxResponse": 4000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"maxTemperature": null,
"vision": false,
"toolChoice": false,
"functionCall": true,
"functionCall": false,
"defaultSystemChatPrompt": "",
"datasetProcess": true,
"usedInClassify": true,
@ -87,10 +89,11 @@
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {
"temperature": 1,
"max_tokens": null,
"stream": false
},
"fieldMap": {
"max_tokens": "max_completion_tokens"
},
"type": "llm"
},
{
@ -99,10 +102,10 @@
"maxContext": 195000,
"maxResponse": 8000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"maxTemperature": null,
"vision": false,
"toolChoice": false,
"functionCall": true,
"functionCall": false,
"defaultSystemChatPrompt": "",
"datasetProcess": true,
"usedInClassify": true,
@ -112,10 +115,11 @@
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {
"temperature": 1,
"max_tokens": null,
"stream": false
},
"fieldMap": {
"max_tokens": "max_completion_tokens"
},
"type": "llm"
},
{

View File

@ -2,10 +2,12 @@ import { replaceVariable } from '@fastgpt/global/common/string/tools';
import { createChatCompletion } from '../config';
import { ChatItemType } from '@fastgpt/global/core/chat/type';
import { countGptMessagesTokens, countPromptTokens } from '../../../common/string/tiktoken/index';
import { chatValue2RuntimePrompt } from '@fastgpt/global/core/chat/adapt';
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
import { getLLMModel } from '../model';
import { llmCompletionsBodyFormat } from '../utils';
import { addLog } from '../../../common/system/log';
import { filterGPTMessageByMaxContext } from '../../chat/utils';
import json5 from 'json5';
/*
query extension -
@ -13,72 +15,73 @@ import { addLog } from '../../../common/system/log';
*/
const title = global.feConfigs?.systemTitle || 'FastAI';
const defaultPrompt = `作为一个向量检索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高向量检索的语义丰富度,提高向量检索的精度。
const defaultPrompt = `## 你的任务
<Example></Example>
##
<Example>
:
"""
null
"""
原问题: 介绍下剧情
: ["介绍下故事的背景。","故事的主题是什么?","介绍下故事的主要人物。"]
----------------
:
"""
Q: 对话背景
A: 当前对话是关于 Nginx 使
user: 对话背景
assistant: 当前对话是关于 Nginx 使
"""
原问题: 怎么下载
: ["Nginx 如何下载?","下载 Nginx 需要什么条件?","有哪些渠道可以下载 Nginx"]
----------------
:
"""
Q: 对话背景
A: 当前对话是关于 Nginx 使
Q: 报错 "no connection"
A: 报错"no connection"
user: 对话背景
assistant: 当前对话是关于 Nginx 使
user: 报错 "no connection"
assistant: 报错"no connection"
"""
原问题: 怎么解决
: ["Nginx报错"no connection"如何解决?","造成'no connection'报错的原因。","Nginx提示'no connection',要怎么办?"]
----------------
:
"""
Q: 护产假多少天?
A: 护产假的天数根据员工所在的城市而定便
user: How long is the maternity leave?
assistant: The number of days of maternity leave depends on the city in which the employee is located. Please provide your city so that I can answer your questions.
"""
原问题: 沈阳
: ["沈阳的护产假多少天?","沈阳的护产假政策。","沈阳的护产假标准。"]
原问题: ShenYang
: ["How many days is maternity leave in Shenyang?","Shenyang's maternity leave policy.","The standard of maternity leave in Shenyang."]
----------------
:
"""
Q: 作者是谁
A: ${title} labring
user: 作者是谁
assistant: ${title} labring
"""
原问题: Tell me about him
: ["Introduce labring, the author of ${title}." ," Background information on author labring." "," Why does labring do ${title}?"]
----------------
:
"""
Q: 对话背景
A: 关于 ${title} 使
user: 对话背景
assistant: 关于 ${title} 使
"""
原问题: 你好
: ["你好"]
----------------
:
"""
Q: ${title}
A: ${title}
user: ${title}
assistant: ${title}
"""
原问题: 你知道 laf
: ["laf 的官网地址是多少?","laf 的使用教程。","laf 有什么特点和优势。"]
----------------
:
"""
Q: ${title}
A: 1.
user: ${title}
assistant: 1.
2. 便
3.
"""
@ -87,18 +90,20 @@ A: 1. 开源
----------------
:
"""
Q: 什么是 ${title}
A: ${title} RAG
Q: 什么是 Laf
A: Laf
user: 什么是 ${title}
assistant: ${title} RAG
user: 什么是 Laf
assistant: Laf
"""
原问题: 它们有什么关系
: ["${title}和Laf有什么关系","介绍下${title}","介绍下Laf"]
</Example>
-----
##
1. JSON
2.
##
:
"""
@ -125,26 +130,39 @@ export const queryExtension = async ({
outputTokens: number;
}> => {
const systemFewShot = chatBg
? `Q: 对话背景。
A: ${chatBg}
? `user: 对话背景。
assistant: ${chatBg}
`
: '';
const historyFewShot = histories
.map((item) => {
const role = item.obj === 'Human' ? 'Q' : 'A';
return `${role}: ${chatValue2RuntimePrompt(item.value).text}`;
})
.join('\n');
const concatFewShot = `${systemFewShot}${historyFewShot}`.trim();
const modelData = getLLMModel(model);
const filterHistories = await filterGPTMessageByMaxContext({
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
maxContext: modelData.maxContext - 1000
});
const historyFewShot = filterHistories
.map((item) => {
const role = item.role;
const content = item.content;
if ((role === 'user' || role === 'assistant') && content) {
if (typeof content === 'string') {
return `${role}: ${content}`;
} else {
return `${role}: ${content.map((item) => (item.type === 'text' ? item.text : '')).join('\n')}`;
}
}
})
.filter(Boolean)
.join('\n');
const concatFewShot = `${systemFewShot}${historyFewShot}`.trim();
const messages = [
{
role: 'user',
content: replaceVariable(defaultPrompt, {
query: `${query}`,
histories: concatFewShot
histories: concatFewShot || 'null'
})
}
] as any;
@ -154,7 +172,7 @@ A: ${chatBg}
{
stream: false,
model: modelData.model,
temperature: 0.01,
temperature: 0.1,
messages
},
modelData
@ -172,22 +190,41 @@ A: ${chatBg}
};
}
const start = answer.indexOf('[');
const end = answer.lastIndexOf(']');
if (start === -1 || end === -1) {
addLog.warn('Query extension failed, not a valid JSON', {
answer
});
return {
rawQuery: query,
extensionQueries: [],
model,
inputTokens: 0,
outputTokens: 0
};
}
// Intercept the content of [] and retain []
answer = answer.match(/\[.*?\]/)?.[0] || '';
answer = answer.replace(/\\"/g, '"');
const jsonStr = answer
.substring(start, end + 1)
.replace(/(\\n|\\)/g, '')
.replace(/ /g, '');
try {
const queries = JSON.parse(answer) as string[];
const queries = json5.parse(jsonStr) as string[];
return {
rawQuery: query,
extensionQueries: Array.isArray(queries) ? queries : [],
extensionQueries: (Array.isArray(queries) ? queries : []).slice(0, 5),
model,
inputTokens: await countGptMessagesTokens(messages),
outputTokens: await countPromptTokens(answer)
};
} catch (error) {
addLog.error(`Query extension error`, error);
addLog.warn('Query extension failed, not a valid JSON', {
answer
});
return {
rawQuery: query,
extensionQueries: [],

View File

@ -2,33 +2,23 @@ import { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
import {
ChatCompletionCreateParamsNonStreaming,
ChatCompletionCreateParamsStreaming,
ChatCompletionMessageParam,
StreamChatType
} from '@fastgpt/global/core/ai/type';
import { countGptMessagesTokens } from '../../common/string/tiktoken';
import { getLLMModel } from './model';
export const computedMaxToken = async ({
/*
Count response max token
*/
export const computedMaxToken = ({
maxToken,
model,
filterMessages = []
model
}: {
maxToken?: number;
model: LLMModelItemType;
filterMessages: ChatCompletionMessageParam[];
}) => {
if (maxToken === undefined) return;
maxToken = Math.min(maxToken, model.maxResponse);
const tokensLimit = model.maxContext;
/* count response max token */
const promptsToken = await countGptMessagesTokens(filterMessages);
maxToken = promptsToken + maxToken > tokensLimit ? tokensLimit - promptsToken : maxToken;
if (maxToken <= 0) {
maxToken = 200;
}
return maxToken;
};
@ -40,6 +30,7 @@ export const computedTemperature = ({
model: LLMModelItemType;
temperature: number;
}) => {
if (typeof model.maxTemperature !== 'number') return undefined;
temperature = +(model.maxTemperature * (temperature / 10)).toFixed(2);
temperature = Math.max(temperature, 0.01);

View File

@ -14,36 +14,19 @@ import { serverRequestBaseUrl } from '../../common/api/serverRequest';
import { i18nT } from '../../../web/i18n/utils';
import { addLog } from '../../common/system/log';
export const filterGPTMessageByMaxTokens = async ({
export const filterGPTMessageByMaxContext = async ({
messages = [],
maxTokens
maxContext
}: {
messages: ChatCompletionMessageParam[];
maxTokens: number;
maxContext: number;
}) => {
if (!Array.isArray(messages)) {
return [];
}
const rawTextLen = messages.reduce((sum, item) => {
if (typeof item.content === 'string') {
return sum + item.content.length;
}
if (Array.isArray(item.content)) {
return (
sum +
item.content.reduce((sum, item) => {
if (item.type === 'text') {
return sum + item.text.length;
}
return sum;
}, 0)
);
}
return sum;
}, 0);
// If the text length is less than half of the maximum token, no calculation is required
if (rawTextLen < maxTokens * 0.5) {
if (messages.length < 4) {
return messages;
}
@ -55,7 +38,7 @@ export const filterGPTMessageByMaxTokens = async ({
const chatPrompts: ChatCompletionMessageParam[] = messages.slice(chatStartIndex);
// reduce token of systemPrompt
maxTokens -= await countGptMessagesTokens(systemPrompts);
maxContext -= await countGptMessagesTokens(systemPrompts);
// Save the last chat prompt(question)
const question = chatPrompts.pop();
@ -73,9 +56,9 @@ export const filterGPTMessageByMaxTokens = async ({
}
const tokens = await countGptMessagesTokens([assistant, user]);
maxTokens -= tokens;
maxContext -= tokens;
/* 整体 tokens 超出范围,截断 */
if (maxTokens < 0) {
if (maxContext < 0) {
break;
}

View File

@ -1,5 +1,5 @@
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
import { filterGPTMessageByMaxTokens, loadRequestMessages } from '../../../chat/utils';
import { filterGPTMessageByMaxContext, loadRequestMessages } from '../../../chat/utils';
import type { ChatItemType } from '@fastgpt/global/core/chat/type.d';
import {
countMessagesTokens,
@ -175,9 +175,9 @@ ${description ? `- ${description}` : ''}
}
];
const adaptMessages = chats2GPTMessages({ messages, reserveId: false });
const filterMessages = await filterGPTMessageByMaxTokens({
const filterMessages = await filterGPTMessageByMaxContext({
messages: adaptMessages,
maxTokens: extractModel.maxContext
maxContext: extractModel.maxContext
});
const requestMessages = await loadRequestMessages({
messages: filterMessages,

View File

@ -1,5 +1,5 @@
import { createChatCompletion } from '../../../../ai/config';
import { filterGPTMessageByMaxTokens, loadRequestMessages } from '../../../../chat/utils';
import { filterGPTMessageByMaxContext, loadRequestMessages } from '../../../../chat/utils';
import {
ChatCompletion,
StreamChatType,
@ -172,10 +172,14 @@ export const runToolWithFunctionCall = async (
};
});
const max_tokens = computedMaxToken({
model: toolModel,
maxToken
});
const filterMessages = (
await filterGPTMessageByMaxTokens({
await filterGPTMessageByMaxContext({
messages,
maxTokens: toolModel.maxContext - 300 // filter token. not response maxToken
maxContext: toolModel.maxContext - (max_tokens || 0) // filter token. not response maxToken
})
).map((item) => {
if (item.role === ChatCompletionRequestMessageRoleEnum.Assistant && item.function_call) {
@ -190,16 +194,11 @@ export const runToolWithFunctionCall = async (
}
return item;
});
const [requestMessages, max_tokens] = await Promise.all([
const [requestMessages] = await Promise.all([
loadRequestMessages({
messages: filterMessages,
useVision: toolModel.vision && aiChatVision,
origin: requestOrigin
}),
computedMaxToken({
model: toolModel,
maxToken,
filterMessages
})
]);
const requestBody = llmCompletionsBodyFormat(

View File

@ -1,5 +1,5 @@
import { createChatCompletion } from '../../../../ai/config';
import { filterGPTMessageByMaxTokens, loadRequestMessages } from '../../../../chat/utils';
import { filterGPTMessageByMaxContext, loadRequestMessages } from '../../../../chat/utils';
import {
ChatCompletion,
StreamChatType,
@ -196,21 +196,20 @@ export const runToolWithPromptCall = async (
return Promise.reject('Prompt call invalid input');
}
const filterMessages = await filterGPTMessageByMaxTokens({
const max_tokens = computedMaxToken({
model: toolModel,
maxToken
});
const filterMessages = await filterGPTMessageByMaxContext({
messages,
maxTokens: toolModel.maxContext - 500 // filter token. not response maxToken
maxContext: toolModel.maxContext - (max_tokens || 0) // filter token. not response maxToken
});
const [requestMessages, max_tokens] = await Promise.all([
const [requestMessages] = await Promise.all([
loadRequestMessages({
messages: filterMessages,
useVision: toolModel.vision && aiChatVision,
origin: requestOrigin
}),
computedMaxToken({
model: toolModel,
maxToken,
filterMessages
})
]);
const requestBody = llmCompletionsBodyFormat(

View File

@ -1,5 +1,5 @@
import { createChatCompletion } from '../../../../ai/config';
import { filterGPTMessageByMaxTokens, loadRequestMessages } from '../../../../chat/utils';
import { filterGPTMessageByMaxContext, loadRequestMessages } from '../../../../chat/utils';
import {
ChatCompletion,
ChatCompletionMessageToolCall,
@ -228,11 +228,16 @@ export const runToolWithToolChoice = async (
};
});
const max_tokens = computedMaxToken({
model: toolModel,
maxToken
});
// Filter histories by maxToken
const filterMessages = (
await filterGPTMessageByMaxTokens({
await filterGPTMessageByMaxContext({
messages,
maxTokens: toolModel.maxContext - 300 // filter token. not response maxToken
maxContext: toolModel.maxContext - (max_tokens || 0) // filter token. not response maxToken
})
).map((item) => {
if (item.role === 'assistant' && item.tool_calls) {
@ -248,16 +253,11 @@ export const runToolWithToolChoice = async (
return item;
});
const [requestMessages, max_tokens] = await Promise.all([
const [requestMessages] = await Promise.all([
loadRequestMessages({
messages: filterMessages,
useVision: toolModel.vision && aiChatVision,
origin: requestOrigin
}),
computedMaxToken({
model: toolModel,
maxToken,
filterMessages
})
]);
const requestBody = llmCompletionsBodyFormat(

View File

@ -1,5 +1,5 @@
import type { NextApiResponse } from 'next';
import { filterGPTMessageByMaxTokens, loadRequestMessages } from '../../../chat/utils';
import { filterGPTMessageByMaxContext, loadRequestMessages } from '../../../chat/utils';
import type { ChatItemType, UserChatItemValueItemType } from '@fastgpt/global/core/chat/type.d';
import { ChatRoleEnum } from '@fastgpt/global/core/chat/constants';
import { SseResponseEventEnum } from '@fastgpt/global/core/workflow/runtime/constants';
@ -58,6 +58,7 @@ export type ChatProps = ModuleDispatchProps<
>;
export type ChatResponse = DispatchNodeResultType<{
[NodeOutputKeyEnum.answerText]: string;
[NodeOutputKeyEnum.reasoningText]?: string;
[NodeOutputKeyEnum.history]: ChatItemType[];
}>;
@ -87,22 +88,24 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
quoteTemplate,
quotePrompt,
aiChatVision,
aiChatReasoning,
fileUrlList: fileLinks, // node quote file links
stringQuoteText //abandon
}
} = props;
const { files: inputFiles } = chatValue2RuntimePrompt(query); // Chat box input files
stream = stream && isResponseAnswerText;
const chatHistories = getHistories(history, histories);
quoteQA = checkQuoteQAValue(quoteQA);
const modelConstantsData = getLLMModel(model);
if (!modelConstantsData) {
return Promise.reject('The chat model is undefined, you need to select a chat model.');
}
stream = stream && isResponseAnswerText;
aiChatReasoning = !!aiChatReasoning && !!modelConstantsData.reasoning;
const chatHistories = getHistories(history, histories);
quoteQA = checkQuoteQAValue(quoteQA);
const [{ datasetQuoteText }, { documentQuoteText, userFiles }] = await Promise.all([
filterDatasetQuote({
quoteQA,
@ -124,9 +127,15 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
return Promise.reject(i18nT('chat:AI_input_is_empty'));
}
const max_tokens = computedMaxToken({
model: modelConstantsData,
maxToken
});
const [{ filterMessages }] = await Promise.all([
getChatMessages({
model: modelConstantsData,
maxTokens: max_tokens,
histories: chatHistories,
useDatasetQuote: quoteQA !== undefined,
datasetQuoteText,
@ -137,8 +146,8 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
userFiles,
documentQuoteText
}),
// Censor = true and system key, will check content
(() => {
// censor model and system key
if (modelConstantsData.censor && !externalProvider.openaiAccount?.key) {
return postTextCensor({
text: `${systemPrompt}
@ -149,18 +158,11 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
})()
]);
const [requestMessages, max_tokens] = await Promise.all([
loadRequestMessages({
messages: filterMessages,
useVision: modelConstantsData.vision && aiChatVision,
origin: requestOrigin
}),
computedMaxToken({
model: modelConstantsData,
maxToken,
filterMessages
})
]);
const requestMessages = await loadRequestMessages({
messages: filterMessages,
useVision: modelConstantsData.vision && aiChatVision,
origin: requestOrigin
});
const requestBody = llmCompletionsBodyFormat(
{
@ -183,34 +185,42 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
}
});
const { answerText } = await (async () => {
const { answerText, reasoningText } = await (async () => {
if (res && isStreamResponse) {
// sse response
const { answer } = await streamResponse({
const { answer, reasoning } = await streamResponse({
res,
stream: response,
aiChatReasoning,
workflowStreamResponse
});
return {
answerText: answer
answerText: answer,
reasoningText: reasoning
};
} else {
const unStreamResponse = response as ChatCompletion;
const answer = unStreamResponse.choices?.[0]?.message?.content || '';
const reasoning = aiChatReasoning
? // @ts-ignore
unStreamResponse.choices?.[0]?.message?.reasoning_content || ''
: '';
if (stream) {
// Some models do not support streaming
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
text: answer
})
});
reasoning &&
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
text: answer,
reasoning_content: reasoning
})
});
}
return {
answerText: answer
answerText: answer,
reasoningText: reasoning
};
}
})();
@ -241,6 +251,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
return {
answerText,
reasoningText,
[DispatchNodeResponseKeyEnum.nodeResponse]: {
totalPoints: externalProvider.openaiAccount?.key ? 0 : totalPoints,
model: modelName,
@ -367,6 +378,7 @@ async function getMultiInput({
async function getChatMessages({
model,
maxTokens = 0,
aiChatQuoteRole,
datasetQuotePrompt = '',
datasetQuoteText,
@ -378,6 +390,7 @@ async function getChatMessages({
documentQuoteText
}: {
model: LLMModelItemType;
maxTokens?: number;
// dataset quote
aiChatQuoteRole: AiChatQuoteRoleType; // user: replace user prompt; system: replace system prompt
datasetQuotePrompt?: string;
@ -444,9 +457,9 @@ async function getChatMessages({
const adaptMessages = chats2GPTMessages({ messages, reserveId: false });
const filterMessages = await filterGPTMessageByMaxTokens({
const filterMessages = await filterGPTMessageByMaxContext({
messages: adaptMessages,
maxTokens: model.maxContext - 300 // filter token. not response maxToken
maxContext: model.maxContext - maxTokens // filter token. not response maxToken
});
return {
@ -457,33 +470,43 @@ async function getChatMessages({
async function streamResponse({
res,
stream,
workflowStreamResponse
workflowStreamResponse,
aiChatReasoning
}: {
res: NextApiResponse;
stream: StreamChatType;
workflowStreamResponse?: WorkflowResponseType;
aiChatReasoning?: boolean;
}) {
const write = responseWriteController({
res,
readStream: stream
});
let answer = '';
let reasoning = '';
for await (const part of stream) {
if (res.closed) {
stream.controller?.abort();
break;
}
const content = part.choices?.[0]?.delta?.content || '';
answer += content;
const reasoningContent = aiChatReasoning
? part.choices?.[0]?.delta?.reasoning_content || ''
: '';
reasoning += reasoningContent;
workflowStreamResponse?.({
write,
event: SseResponseEventEnum.answer,
data: textAdaptGptResponse({
text: content
text: content,
reasoning_content: reasoningContent
})
});
}
return { answer };
return { answer, reasoning };
}

View File

@ -204,6 +204,7 @@ export async function dispatchWorkFlow(data: Props): Promise<DispatchFlowRespons
{ inputs = [] }: RuntimeNodeItemType,
{
answerText = '',
reasoningText,
responseData,
nodeDispatchUsages,
toolResponses,
@ -213,6 +214,7 @@ export async function dispatchWorkFlow(data: Props): Promise<DispatchFlowRespons
}: Omit<
DispatchNodeResultType<{
[NodeOutputKeyEnum.answerText]?: string;
[NodeOutputKeyEnum.reasoningText]?: string;
[DispatchNodeResponseKeyEnum.nodeResponse]?: ChatHistoryItemResType;
}>,
'nodeResponse'
@ -251,6 +253,13 @@ export async function dispatchWorkFlow(data: Props): Promise<DispatchFlowRespons
}
});
}
} else if (reasoningText) {
chatAssistantResponse.push({
type: ChatItemValueTypeEnum.reasoning,
reasoning: {
content: reasoningText
}
});
}
if (rewriteHistories) {

View File

@ -178,6 +178,7 @@ export const iconPaths = {
'core/chat/sideLine': () => import('./icons/core/chat/sideLine.svg'),
'core/chat/speaking': () => import('./icons/core/chat/speaking.svg'),
'core/chat/stopSpeech': () => import('./icons/core/chat/stopSpeech.svg'),
'core/chat/think': () => import('./icons/core/chat/think.svg'),
'core/dataset/commonDataset': () => import('./icons/core/dataset/commonDataset.svg'),
'core/dataset/commonDatasetColor': () => import('./icons/core/dataset/commonDatasetColor.svg'),
'core/dataset/commonDatasetOutline': () =>

View File

@ -0,0 +1 @@
<svg t="1737983662269" class="icon" viewBox="0 0 1024 1024" version="1.1" xmlns="http://www.w3.org/2000/svg" p-id="6134" width="64" height="64"><path d="M512 512m-91.264 0a91.264 91.264 0 1 0 182.528 0 91.264 91.264 0 1 0-182.528 0Z" fill="" p-id="6135"></path><path d="M256.341333 693.546667l-20.138666-5.12C86.101333 650.496 0 586.112 0 511.829333s86.101333-138.666667 236.202667-176.597333l20.138666-5.077333 5.674667 19.968a1003.946667 1003.946667 0 0 0 58.154667 152.661333l4.309333 9.088-4.309333 9.088a994.432 994.432 0 0 0-58.154667 152.661333l-5.674667 19.925334zM226.858667 381.866667c-114.090667 32.042667-184.106667 81.066667-184.106667 129.962666 0 48.853333 70.016 97.877333 184.106667 129.962667a1064.533333 1064.533333 0 0 1 50.432-129.962667A1056.085333 1056.085333 0 0 1 226.858667 381.866667z m540.8 311.68l-5.674667-20.010667a996.565333 996.565333 0 0 0-58.197333-152.618667l-4.309334-9.088 4.309334-9.088a999.253333 999.253333 0 0 0 58.197333-152.661333l5.674667-19.968 20.181333 5.077333c150.058667 37.930667 236.16 102.314667 236.16 176.64s-86.101333 138.666667-236.16 176.597334l-20.181333 5.12z m-20.949334-181.717334c20.48 44.330667 37.418667 87.893333 50.432 129.962667 114.133333-32.085333 184.106667-81.109333 184.106667-129.962667 0-48.896-70.016-97.877333-184.106667-129.962666a1057.621333 1057.621333 0 0 1-50.432 129.962666z" fill="" p-id="6136"></path><path d="M226.56 381.653333l-5.674667-19.925333C178.688 212.992 191.488 106.410667 256 69.205333c63.274667-36.522667 164.864 6.613333 271.317333 115.882667l14.506667 14.890667-14.506667 14.890666a1004.885333 1004.885333 0 0 0-103.338666 126.592l-5.76 8.234667-10.026667 0.853333a1009.365333 1009.365333 0 0 0-161.493333 26.026667l-20.138667 5.077333z m80.896-282.88c-11.434667 0-21.546667 2.474667-30.08 7.381334-42.410667 24.448-49.92 109.44-20.693333 224.128a1071.872 1071.872 0 0 1 137.941333-21.376 1060.138667 1060.138667 0 0 1 87.552-108.544c-66.56-64.810667-129.578667-101.589333-174.72-101.589334z m409.130667 868.778667c-0.042667 0-0.042667 0 0 0-60.8 0-138.88-45.781333-219.904-128.981333l-14.506667-14.890667 14.506667-14.890667a1003.946667 1003.946667 0 0 0 103.296-126.634666l5.76-8.234667 9.984-0.853333a1008.213333 1008.213333 0 0 0 161.578666-25.984l20.138667-5.077334 5.717333 19.968c42.112 148.650667 29.354667 255.274667-35.157333 292.437334a101.546667 101.546667 0 0 1-51.413333 13.141333z m-174.762667-144.256c66.56 64.810667 129.578667 101.589333 174.72 101.589333h0.042667c11.392 0 21.546667-2.474667 30.037333-7.381333 42.410667-24.448 49.962667-109.482667 20.693333-224.170667a1067.52 1067.52 0 0 1-137.984 21.376 1052.757333 1052.757333 0 0 1-87.509333 108.586667z" fill="" p-id="6137"></path><path d="M797.44 381.653333l-20.138667-5.077333a1001.770667 1001.770667 0 0 0-161.578666-26.026667l-9.984-0.853333-5.76-8.234667a998.997333 998.997333 0 0 0-103.296-126.592l-14.506667-14.890666 14.506667-14.890667C603.093333 75.861333 704.64 32.725333 768 69.205333c64.512 37.205333 77.312 143.786667 35.157333 292.48l-5.717333 19.968zM629.333333 308.906667c48.725333 4.437333 95.018667 11.648 137.984 21.376 29.269333-114.688 21.717333-199.68-20.693333-224.128-42.154667-24.362667-121.386667 12.970667-204.8 94.208A1060.224 1060.224 0 0 1 629.333333 308.906667zM307.456 967.552A101.546667 101.546667 0 0 1 256 954.410667c-64.512-37.162667-77.312-143.744-35.114667-292.437334l5.632-19.968 20.138667 5.077334c49.28 12.416 103.637333 21.162667 161.493333 25.984l10.026667 0.853333 5.717333 8.234667a1006.762667 1006.762667 0 0 0 103.338667 126.634666l14.506667 14.890667-14.506667 14.890667c-80.981333 83.2-159.061333 128.981333-219.776 128.981333z m-50.773333-274.218667c-29.269333 114.688-21.717333 199.722667 20.693333 224.170667 42.112 24.021333 121.301333-13.013333 204.8-94.208a1066.581333 1066.581333 0 0 1-87.552-108.586667 1065.642667 1065.642667 0 0 1-137.941333-21.376z" fill="" p-id="6138"></path><path d="M512 720.128c-35.114667 0-71.210667-1.536-107.349333-4.522667l-10.026667-0.853333-5.76-8.234667a1296.554667 1296.554667 0 0 1-57.6-90.538666 1295.104 1295.104 0 0 1-49.749333-95.061334l-4.266667-9.088 4.266667-9.088a1292.8 1292.8 0 0 1 49.749333-95.061333c17.664-30.549333 37.077333-61.013333 57.6-90.538667l5.76-8.234666 10.026667-0.853334a1270.826667 1270.826667 0 0 1 214.741333 0l9.984 0.853334 5.717333 8.234666a1280.256 1280.256 0 0 1 107.392 185.6l4.309334 9.088-4.309334 9.088a1262.933333 1262.933333 0 0 1-107.392 185.6l-5.717333 8.234667-9.984 0.853333c-36.138667 2.986667-72.277333 4.522667-107.392 4.522667z m-93.738667-46.250667c63.146667 4.736 124.330667 4.736 187.52 0a1237.589333 1237.589333 0 0 0 93.696-162.048 1219.626667 1219.626667 0 0 0-93.738666-162.048 1238.656 1238.656 0 0 0-187.477334 0 1215.018667 1215.018667 0 0 0-93.738666 162.048 1242.197333 1242.197333 0 0 0 93.738666 162.048z" p-id="6139"></path></svg>

After

Width:  |  Height:  |  Size: 4.7 KiB

View File

@ -304,7 +304,7 @@ export function useScrollPagination<
);
return (
<MyBox {...props} ref={ref} overflow={'overlay'} isLoading={isLoading}>
<MyBox ref={ref} h={'100%'} overflow={'auto'} isLoading={isLoading} {...props}>
{scrollLoadType === 'top' && total > 0 && isLoading && (
<Box mt={2} fontSize={'xs'} color={'blackAlpha.500'} textAlign={'center'}>
{t('common:common.is_requesting')}

View File

@ -49,10 +49,10 @@
"model.output_price": "Output price",
"model.output_price_tip": "The language model output price. If this item is configured, the model comprehensive price will be invalid.",
"model.param_name": "Parameter name",
"model.request_auth": "Custom token",
"model.request_auth": "Custom key",
"model.request_auth_tip": "When making a request to a custom request address, carry the request header: Authorization: Bearer xxx to make the request.",
"model.request_url": "Custom url",
"model.request_url_tip": "If this value is filled in, a request will be made directly to this address without going through OneAPI",
"model.request_url_tip": "If you fill in this value, you will initiate a request directly without passing. \nYou need to follow the API format of Openai and fill in the full request address, such as\n\nLLM: {Host}}/v1/Chat/Completions\n\nEmbedding: {host}}/v1/embeddings\n\nSTT: {Host}/v1/Audio/Transcriptions\n\nTTS: {Host}}/v1/Audio/Speech\n\nRERARARARARARARANK: {Host}}/v1/RERARARARARARARARARARANK",
"model.test_model": "Model testing",
"model.tool_choice": "Tool choice",
"model.tool_choice_tag": "ToolCall",

View File

@ -109,6 +109,7 @@
"publish_channel": "Publish",
"publish_success": "Publish Successful",
"question_guide_tip": "After the conversation, 3 guiding questions will be generated for you.",
"reasoning_response": "Output thinking",
"saved_success": "Saved successfully! \nTo use this version externally, click Save and Publish",
"search_app": "Search apps",
"setting_app": "Workflow",

View File

@ -2,6 +2,7 @@
"AI_input_is_empty": "The content passed to the AI node is empty",
"Delete_all": "Clear All Lexicon",
"LLM_model_response_empty": "The model flow response is empty, please check whether the model flow output is normal.",
"ai_reasoning": "Thinking process",
"chat_history": "Conversation History",
"chat_input_guide_lexicon_is_empty": "Lexicon not configured yet",
"chat_test_app": "Debug-{{name}}",

View File

@ -49,10 +49,10 @@
"model.output_price": "模型输出价格",
"model.output_price_tip": "语言模型输出价格,如果配置了该项,则模型综合价格会失效",
"model.param_name": "参数名",
"model.request_auth": "自定义请求 Tokens",
"model.request_auth": "自定义请求 Key",
"model.request_auth_tip": "向自定义请求地址发起请求时候携带请求头Authorization: Bearer xxx 进行请求",
"model.request_url": "自定义请求地址",
"model.request_url_tip": "如果填写该值,则会直接向该地址发起请求,不经过 OneAPI",
"model.request_url_tip": "如果填写该值,则会直接向该地址发起请求,不经过 OneAPI。需要遵循 OpenAI 的 API格式并填写完整请求地址例如\nLLM: {{host}}/v1/chat/completions\nEmbedding: {{host}}/v1/embeddings\nSTT: {{host}}/v1/audio/transcriptions\nTTS: {{host}}/v1/audio/speech\nRerank: {{host}}/v1/rerank",
"model.test_model": "模型测试",
"model.tool_choice": "支持工具调用",
"model.tool_choice_tag": "工具调用",

View File

@ -109,6 +109,7 @@
"publish_channel": "发布渠道",
"publish_success": "发布成功",
"question_guide_tip": "对话结束后,会为你生成 3 个引导性问题。",
"reasoning_response": "输出思考",
"saved_success": "保存成功!如需在外部使用该版本,请点击“保存并发布”",
"search_app": "搜索应用",
"setting_app": "应用配置",

View File

@ -2,6 +2,7 @@
"AI_input_is_empty": "传入AI 节点的内容为空",
"Delete_all": "清空词库",
"LLM_model_response_empty": "模型流响应为空,请检查模型流输出是否正常",
"ai_reasoning": "思考过程",
"chat_history": "聊天记录",
"chat_input_guide_lexicon_is_empty": "还没有配置词库",
"chat_test_app": "调试-{{name}}",

View File

@ -48,10 +48,10 @@
"model.output_price": "模型輸出價格",
"model.output_price_tip": "語言模型輸出價格,如果配置了該項,則模型綜合價格會失效",
"model.param_name": "參數名",
"model.request_auth": "自訂請求 Tokens",
"model.request_auth": "自訂請求 Key",
"model.request_auth_tip": "向自訂請求地址發起請求時候攜帶請求頭Authorization: Bearer xxx 進行請求",
"model.request_url": "自訂請求地址",
"model.request_url_tip": "如果填入該值,則會直接向該位址發起請求,不經過 OneAPI",
"model.request_url_tip": "如果填寫該值,則會直接向該地址發起請求,不經過 OneAPI。\n需要遵循 OpenAI 的 API格式並填寫完整請求地址例如\n\nLLM: {{host}}/v1/chat/completions\n\nEmbedding: {{host}}/v1/embeddings\n\nSTT: {{host}}/v1/audio/transcriptions\n\nTTS: {{host}}/v1/audio/speech\n\nRerank: {{host}}/v1/rerank",
"model.test_model": "模型測試",
"model.tool_choice": "支援工具調用",
"model.tool_choice_tag": "工具調用",

View File

@ -109,6 +109,7 @@
"publish_channel": "發布通道",
"publish_success": "發布成功",
"question_guide_tip": "對話結束後,會為你產生 3 個引導性問題。",
"reasoning_response": "輸出思考",
"saved_success": "保存成功!\n如需在外部使用該版本請點擊“儲存並發布”",
"search_app": "搜尋應用程式",
"setting_app": "應用程式設定",

View File

@ -2,6 +2,7 @@
"AI_input_is_empty": "傳送至 AI 節點的內容為空",
"Delete_all": "清除所有詞彙",
"LLM_model_response_empty": "模型流程回應為空,請檢查模型流程輸出是否正常",
"ai_reasoning": "思考過程",
"chat_history": "對話紀錄",
"chat_input_guide_lexicon_is_empty": "尚未設定詞彙庫",
"chat_test_app": "調試-{{name}}",

View File

@ -72,6 +72,7 @@ const AIChatSettingsModal = ({
defaultValues: defaultData
});
const model = watch('model');
const reasoning = watch(NodeInputKeyEnum.aiChatReasoning);
const showResponseAnswerText = watch(NodeInputKeyEnum.aiChatIsResponseText) !== undefined;
const showVisionSwitch = watch(NodeInputKeyEnum.aiChatVision) !== undefined;
const showMaxHistoriesSlider = watch('maxHistories') !== undefined;
@ -84,6 +85,8 @@ const AIChatSettingsModal = ({
return getWebLLMModel(model);
}, [model]);
const llmSupportVision = !!selectedModel?.vision;
const llmSupportTemperature = typeof selectedModel?.maxTemperature === 'number';
const llmSupportReasoning = !!selectedModel?.reasoning;
const tokenLimit = useMemo(() => {
return selectedModel?.maxResponse || 4096;
@ -258,36 +261,51 @@ const AIChatSettingsModal = ({
/>
</Box>
</Flex>
<Flex {...FlexItemStyles}>
<Box {...LabelStyles}>
<Flex alignItems={'center'}>
{t('app:temperature')}
<QuestionTip label={t('app:temperature_tip')} />
</Flex>
<Switch
isChecked={temperature !== undefined}
size={'sm'}
onChange={(e) => {
setValue('temperature', e.target.checked ? 0 : undefined);
}}
/>
</Box>
<Box flex={'1 0 0'}>
<InputSlider
min={0}
max={10}
step={1}
value={temperature}
isDisabled={temperature === undefined}
onChange={(e) => {
setValue(NodeInputKeyEnum.aiChatTemperature, e);
setRefresh(!refresh);
}}
/>
</Box>
</Flex>
{llmSupportTemperature && (
<Flex {...FlexItemStyles}>
<Box {...LabelStyles}>
<Flex alignItems={'center'}>
{t('app:temperature')}
<QuestionTip label={t('app:temperature_tip')} />
</Flex>
<Switch
isChecked={temperature !== undefined}
size={'sm'}
onChange={(e) => {
setValue('temperature', e.target.checked ? 0 : undefined);
}}
/>
</Box>
<Box flex={'1 0 0'}>
<InputSlider
min={0}
max={10}
step={1}
value={temperature}
isDisabled={temperature === undefined}
onChange={(e) => {
setValue(NodeInputKeyEnum.aiChatTemperature, e);
setRefresh(!refresh);
}}
/>
</Box>
</Flex>
)}
{llmSupportReasoning && (
<Flex {...FlexItemStyles} h={'25px'}>
<Box {...LabelStyles}>
<Flex alignItems={'center'}>{t('app:reasoning_response')}</Flex>
<Switch
isChecked={reasoning || false}
size={'sm'}
onChange={(e) => {
const value = e.target.checked;
setValue(NodeInputKeyEnum.aiChatReasoning, value);
}}
/>
</Box>
</Flex>
)}
{showResponseAnswerText && (
<Flex {...FlexItemStyles} h={'25px'}>
<Box {...LabelStyles}>

View File

@ -201,6 +201,7 @@ const ChatBox = ({
({
event,
text = '',
reasoningText,
status,
name,
tool,
@ -247,6 +248,25 @@ const ChatBox = ({
value: item.value.slice(0, -1).concat(lastValue)
};
}
} else if (event === SseResponseEventEnum.answer && reasoningText) {
if (lastValue.type === ChatItemValueTypeEnum.reasoning && lastValue.reasoning) {
lastValue.reasoning.content += reasoningText;
return {
...item,
value: item.value.slice(0, -1).concat(lastValue)
};
} else {
const val: AIChatItemValueItemType = {
type: ChatItemValueTypeEnum.reasoning,
reasoning: {
content: reasoningText
}
};
return {
...item,
value: item.value.concat(val)
};
}
} else if (event === SseResponseEventEnum.toolCall && tool) {
const val: AIChatItemValueItemType = {
type: ChatItemValueTypeEnum.tool,

View File

@ -6,6 +6,7 @@ import { WorkflowInteractiveResponseType } from '@fastgpt/global/core/workflow/t
export type generatingMessageProps = {
event: SseResponseEventEnum;
text?: string;
reasoningText?: string;
name?: string;
status?: 'running' | 'finish';
tool?: ToolModuleResponseItemType;

View File

@ -8,6 +8,7 @@ import {
Box,
Button,
Flex,
HStack,
Textarea
} from '@chakra-ui/react';
import { ChatItemValueTypeEnum } from '@fastgpt/global/core/chat/constants';
@ -139,6 +140,55 @@ ${toolResponse}`}
},
(prevProps, nextProps) => isEqual(prevProps, nextProps)
);
const RenderResoningContent = React.memo(function RenderResoningContent({
content,
showAnimation
}: {
content: string;
showAnimation: boolean;
}) {
const { t } = useTranslation();
return (
<Accordion allowToggle defaultIndex={0}>
<AccordionItem borderTop={'none'} borderBottom={'none'}>
<AccordionButton
w={'auto'}
bg={'white'}
borderRadius={'md'}
borderWidth={'1px'}
borderColor={'myGray.200'}
boxShadow={'1'}
pl={3}
pr={2.5}
py={1}
_hover={{
bg: 'auto'
}}
>
<HStack mr={2} spacing={1}>
<MyIcon name={'core/chat/think'} w={'0.85rem'} />
<Box fontSize={'sm'}>{t('chat:ai_reasoning')}</Box>
</HStack>
{showAnimation && <MyIcon name={'common/loading'} w={'0.85rem'} />}
<AccordionIcon color={'myGray.600'} ml={5} />
</AccordionButton>
<AccordionPanel
py={0}
pr={0}
pl={3}
mt={2}
borderLeft={'2px solid'}
borderColor={'myGray.300'}
color={'myGray.500'}
>
<Markdown source={content} />
</AccordionPanel>
</AccordionItem>
</Accordion>
);
});
const RenderUserSelectInteractive = React.memo(function RenderInteractive({
interactive
}: {
@ -290,6 +340,8 @@ const AIResponseBox = ({ value, isLastResponseValue, isChatting }: props) => {
return (
<RenderText showAnimation={isChatting && isLastResponseValue} text={value.text.content} />
);
if (value.type === ChatItemValueTypeEnum.reasoning && value.reasoning)
return <RenderResoningContent showAnimation={isChatting} content={value.reasoning.content} />;
if (value.type === ChatItemValueTypeEnum.tool && value.tools)
return <RenderTool showAnimation={isChatting} tools={value.tools} />;
if (value.type === ChatItemValueTypeEnum.interactive && value.interactive) {

View File

@ -803,6 +803,10 @@ const ModelEditModal = ({
<JsonEditor
value={JSON.stringify(getValues('defaultConfig'), null, 2)}
onChange={(e) => {
if (!e) {
setValue('defaultConfig', undefined);
return;
}
try {
setValue('defaultConfig', JSON.parse(e));
} catch (error) {
@ -1009,6 +1013,10 @@ const ModelEditModal = ({
value={JSON.stringify(getValues('defaultConfig'), null, 2)}
resize
onChange={(e) => {
if (!e) {
setValue('defaultConfig', undefined);
return;
}
try {
setValue('defaultConfig', JSON.parse(e));
} catch (error) {

View File

@ -14,7 +14,7 @@ import Avatar from '@fastgpt/web/components/common/Avatar';
import Tag from '@fastgpt/web/components/common/Tag';
import { useTranslation } from 'next-i18next';
import React, { useMemo, useState } from 'react';
import React, { useMemo, useRef, useState } from 'react';
import { useRequest2 } from '@fastgpt/web/hooks/useRequest';
import { useContextSelector } from 'use-context-selector';
import { TeamContext } from '../context';
@ -50,6 +50,8 @@ function GroupEditModal({ onClose, editGroupId }: { onClose: () => void; editGro
const refetchMembers = useContextSelector(TeamContext, (v) => v.refetchMembers);
const MemberScrollData = useContextSelector(TeamContext, (v) => v.MemberScrollData);
const [hoveredMemberId, setHoveredMemberId] = useState<string>();
const selectedMembersRef = useRef<HTMLDivElement>(null);
const [members, setMembers] = useState(group?.members || []);
const [searchKey, setSearchKey] = useState('');
@ -155,7 +157,7 @@ function GroupEditModal({ onClose, editGroupId }: { onClose: () => void; editGro
setSearchKey(e.target.value);
}}
/>
<MemberScrollData mt={3} flex={'1 0 0'} h={0}>
<MemberScrollData mt={3} flexGrow="1" overflow={'auto'} maxH={'400px'}>
{filtered.map((member) => {
return (
<HStack
@ -185,7 +187,7 @@ function GroupEditModal({ onClose, editGroupId }: { onClose: () => void; editGro
</Flex>
<Flex borderLeft="1px" borderColor="myGray.200" flexDirection="column" p="4" h={'100%'}>
<Box mt={2}>{t('common:chosen') + ': ' + members.length}</Box>
<MemberScrollData mt={3} flex={'1 0 0'} h={0}>
<MemberScrollData ScrollContainerRef={selectedMembersRef} mt={3} flex={'1 0 0'} h={0}>
{members.map((member) => {
return (
<HStack

View File

@ -169,8 +169,8 @@ function MemberTable({ Tabs }: { Tabs: React.ReactNode }) {
</Flex>
<Box flex={'1 0 0'} overflow={'auto'}>
<TableContainer overflow={'unset'} fontSize={'sm'}>
<MemberScrollData>
<MemberScrollData>
<TableContainer overflow={'unset'} fontSize={'sm'}>
<Table overflow={'unset'}>
<Thead>
<Tr bgColor={'white !important'}>
@ -246,9 +246,9 @@ function MemberTable({ Tabs }: { Tabs: React.ReactNode }) {
))}
</Tbody>
</Table>
</MemberScrollData>
<ConfirmRemoveMemberModal />
</TableContainer>
<ConfirmRemoveMemberModal />
</TableContainer>
</MemberScrollData>
</Box>
<ConfirmLeaveTeamModal />

View File

@ -121,36 +121,34 @@ function OrgMemberManageModal({
setSearchKey(e.target.value);
}}
/>
<Flex flexDirection="column" mt={3} flexGrow="1" overflow={'auto'} maxH={'400px'}>
<MemberScrollData>
{filterMembers.map((member) => {
return (
<HStack
py="2"
px={3}
borderRadius={'md'}
alignItems="center"
key={member.tmbId}
cursor={'pointer'}
_hover={{
bg: 'myGray.50',
...(!isSelected(member.tmbId) ? { svg: { color: 'myGray.50' } } : {})
}}
_notLast={{ mb: 2 }}
onClick={() => handleToggleSelect(member.tmbId)}
>
<Checkbox
isChecked={!!isSelected(member.tmbId)}
icon={<CheckboxIcon name={'common/check'} />}
pointerEvents="none"
/>
<Avatar src={member.avatar} w="1.5rem" borderRadius={'50%'} />
<Box>{member.memberName}</Box>
</HStack>
);
})}
</MemberScrollData>
</Flex>
<MemberScrollData mt={3} flexGrow="1" overflow={'auto'} maxH={'400px'}>
{filterMembers.map((member) => {
return (
<HStack
py="2"
px={3}
borderRadius={'md'}
alignItems="center"
key={member.tmbId}
cursor={'pointer'}
_hover={{
bg: 'myGray.50',
...(!isSelected(member.tmbId) ? { svg: { color: 'myGray.50' } } : {})
}}
_notLast={{ mb: 2 }}
onClick={() => handleToggleSelect(member.tmbId)}
>
<Checkbox
isChecked={!!isSelected(member.tmbId)}
icon={<CheckboxIcon name={'common/check'} />}
pointerEvents="none"
/>
<Avatar src={member.avatar} w="1.5rem" borderRadius={'50%'} />
<Box>{member.memberName}</Box>
</HStack>
);
})}
</MemberScrollData>
</Flex>
<Flex borderLeft="1px" borderColor="myGray.200" flexDirection="column" p="4" h={'100%'}>
<Box mt={2}>{`${t('common:chosen')}:${selectedMembers.length}`}</Box>

View File

@ -38,7 +38,9 @@ const SelectAiModelRender = ({ item, inputs = [], nodeId }: RenderInputProps) =>
(input) => input.key === NodeInputKeyEnum.aiChatIsResponseText
)?.value,
aiChatVision:
inputs.find((input) => input.key === NodeInputKeyEnum.aiChatVision)?.value ?? true
inputs.find((input) => input.key === NodeInputKeyEnum.aiChatVision)?.value ?? true,
aiChatReasoning:
inputs.find((input) => input.key === NodeInputKeyEnum.aiChatReasoning)?.value ?? true
}),
[inputs]
);

View File

@ -186,6 +186,12 @@ export const streamFetch = ({
text: item
});
}
const reasoningText = parseJson.choices?.[0]?.delta?.reasoning_content || '';
onMessage({
event,
reasoningText
});
} else if (event === SseResponseEventEnum.fastAnswer) {
const text = parseJson.choices?.[0]?.delta?.content || '';
pushDataToQueue({

View File

@ -1,7 +1,7 @@
import { parseCurl } from '@fastgpt/global/common/string/http';
import { AppTypeEnum } from '@fastgpt/global/core/app/constants';
import { AppSchema } from '@fastgpt/global/core/app/type';
import { WorkflowIOValueTypeEnum } from '@fastgpt/global/core/workflow/constants';
import { NodeInputKeyEnum, WorkflowIOValueTypeEnum } from '@fastgpt/global/core/workflow/constants';
import {
FlowNodeInputTypeEnum,
FlowNodeOutputTypeEnum,
@ -150,7 +150,7 @@ export const emptyTemplates: Record<
key: 'temperature',
renderTypeList: [FlowNodeInputTypeEnum.hidden],
label: '',
value: 0,
value: undefined,
valueType: WorkflowIOValueTypeEnum.number,
min: 0,
max: 10,
@ -160,7 +160,7 @@ export const emptyTemplates: Record<
key: 'maxToken',
renderTypeList: [FlowNodeInputTypeEnum.hidden],
label: '',
value: 2000,
value: undefined,
valueType: WorkflowIOValueTypeEnum.number,
min: 100,
max: 4000,
@ -221,6 +221,13 @@ export const emptyTemplates: Record<
debugLabel: i18nT('common:core.module.Dataset quote.label'),
description: '',
valueType: WorkflowIOValueTypeEnum.datasetQuote
},
{
key: NodeInputKeyEnum.aiChatReasoning,
renderTypeList: [FlowNodeInputTypeEnum.hidden],
label: '',
valueType: WorkflowIOValueTypeEnum.boolean,
value: true
}
],
outputs: [