import type { NextApiRequest, NextApiResponse } from 'next'; import { connectToDatabase } from '@/service/mongo'; import { getOpenAIApi, authChat } from '@/service/utils/chat'; import { httpsAgent, openaiChatFilter } from '@/service/utils/tools'; import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai'; import { ChatItemType } from '@/types/chat'; import { jsonRes } from '@/service/response'; import type { ModelSchema } from '@/types/mongoSchema'; import { PassThrough } from 'stream'; import { modelList } from '@/constants/model'; import { pushChatBill } from '@/service/events/pushBill'; import { gpt35StreamResponse } from '@/service/utils/openai'; /* 发送提示词 */ export default async function handler(req: NextApiRequest, res: NextApiResponse) { let step = 0; // step=1时,表示开始了流响应 const stream = new PassThrough(); stream.on('error', () => { console.log('error: ', 'stream error'); stream.destroy(); }); res.on('close', () => { stream.destroy(); }); res.on('error', () => { console.log('error: ', 'request error'); stream.destroy(); }); try { const { chatId, prompt } = req.body as { prompt: ChatItemType; chatId: string; }; const { authorization } = req.headers; if (!chatId || !prompt) { throw new Error('缺少参数'); } await connectToDatabase(); let startTime = Date.now(); const { chat, userApiKey, systemKey, userId } = await authChat(chatId, authorization); const model: ModelSchema = chat.modelId; const modelConstantsData = modelList.find((item) => item.model === model.service.modelName); if (!modelConstantsData) { throw new Error('模型加载异常'); } // 读取对话内容 const prompts = [...chat.content, prompt]; // 如果有系统提示词,自动插入 if (model.systemPrompt) { prompts.unshift({ obj: 'SYSTEM', value: model.systemPrompt }); } // 控制在 tokens 数量,防止超出 // const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken); // 格式化文本内容成 chatgpt 格式 const map = { Human: ChatCompletionRequestMessageRoleEnum.User, AI: ChatCompletionRequestMessageRoleEnum.Assistant, SYSTEM: ChatCompletionRequestMessageRoleEnum.System }; const formatPrompts: ChatCompletionRequestMessage[] = prompts.map((item: ChatItemType) => ({ role: map[item.obj], content: item.value })); // console.log(formatPrompts); // 计算温度 const temperature = modelConstantsData.maxTemperature * (model.temperature / 10); // 获取 chatAPI const chatAPI = getOpenAIApi(userApiKey || systemKey); // 发出请求 const chatResponse = await chatAPI.createChatCompletion( { model: model.service.chatModel, temperature: temperature, // max_tokens: modelConstantsData.maxToken, messages: formatPrompts, frequency_penalty: 0.5, // 越大,重复内容越少 presence_penalty: -0.5, // 越大,越容易出现新内容 stream: true, stop: ['.!?。'] }, { timeout: 40000, responseType: 'stream', httpsAgent: httpsAgent(!userApiKey) } ); console.log('api response time:', `${(Date.now() - startTime) / 1000}s`); step = 1; const { responseContent } = await gpt35StreamResponse({ res, stream, chatResponse }); const promptsContent = formatPrompts.map((item) => item.content).join(''); // 只有使用平台的 key 才计费 pushChatBill({ isPay: !userApiKey, modelName: model.service.modelName, userId, chatId, text: promptsContent + responseContent }); } catch (err: any) { if (step === 1) { // 直接结束流 console.log('error,结束'); stream.destroy(); } else { res.status(500); jsonRes(res, { code: 500, error: err }); } } }