import type { NextApiRequest, NextApiResponse } from 'next'; import { connectToDatabase, Model } from '@/service/mongo'; import { httpsAgent, openaiChatFilter, systemPromptFilter, authOpenApiKey } from '@/service/utils/tools'; import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai'; import { ChatItemType } from '@/types/chat'; import { jsonRes } from '@/service/response'; import { PassThrough } from 'stream'; import { modelList, ModelVectorSearchModeMap, ModelVectorSearchModeEnum } from '@/constants/model'; import { pushChatBill } from '@/service/events/pushBill'; import { connectRedis } from '@/service/redis'; import { VecModelDataPrefix } from '@/constants/redis'; import { vectorToBuffer } from '@/utils/tools'; import { openaiCreateEmbedding, gpt35StreamResponse } from '@/service/utils/openai'; import dayjs from 'dayjs'; /* 发送提示词 */ export default async function handler(req: NextApiRequest, res: NextApiResponse) { let step = 0; // step=1时,表示开始了流响应 const stream = new PassThrough(); stream.on('error', () => { console.log('error: ', 'stream error'); stream.destroy(); }); res.on('close', () => { stream.destroy(); }); res.on('error', () => { console.log('error: ', 'request error'); stream.destroy(); }); try { const { prompts, modelId, isStream = true } = req.body as { prompts: ChatItemType[]; modelId: string; isStream: boolean; }; if (!prompts || !modelId) { throw new Error('缺少参数'); } if (!Array.isArray(prompts)) { throw new Error('prompts is not array'); } if (prompts.length > 30 || prompts.length === 0) { throw new Error('prompts length range 1-30'); } await connectToDatabase(); const redis = await connectRedis(); let startTime = Date.now(); /* 凭证校验 */ const { apiKey, userId } = await authOpenApiKey(req); const model = await Model.findOne({ _id: modelId, userId }); if (!model) { throw new Error('无权使用该模型'); } const modelConstantsData = modelList.find((item) => item.model === model?.service?.modelName); if (!modelConstantsData) { throw new Error('模型初始化异常'); } // 获取提示词的向量 const { vector: promptVector, chatAPI } = await openaiCreateEmbedding({ isPay: true, apiKey, userId, text: prompts[prompts.length - 1].value // 取最后一个 }); // 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text const similarity = ModelVectorSearchModeMap[model.search.mode]?.similarity || 0.22; // 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text const redisData: any[] = await redis.sendCommand([ 'FT.SEARCH', `idx:${VecModelDataPrefix}:hash`, `@modelId:{${modelId}} @vector:[VECTOR_RANGE ${similarity} $blob]=>{$YIELD_DISTANCE_AS: score}`, 'RETURN', '1', 'text', 'SORTBY', 'score', 'PARAMS', '2', 'blob', vectorToBuffer(promptVector), 'LIMIT', '0', '30', 'DIALECT', '2' ]); const formatRedisPrompt: string[] = []; // 格式化响应值,获取 qa for (let i = 2; i < 61; i += 2) { const text = redisData[i]?.[1]; if (text) { formatRedisPrompt.push(text); } } // system 合并 if (prompts[0].obj === 'SYSTEM') { formatRedisPrompt.unshift(prompts.shift()?.value || ''); } /* 高相似度+退出,无法匹配时直接退出 */ if ( formatRedisPrompt.length === 0 && model.search.mode === ModelVectorSearchModeEnum.hightSimilarity ) { return res.send('对不起,你的问题不在知识库中。'); } /* 高相似度+无上下文,不添加额外知识 */ if ( formatRedisPrompt.length === 0 && model.search.mode === ModelVectorSearchModeEnum.noContext ) { prompts.unshift({ obj: 'SYSTEM', value: model.systemPrompt }); } else { // 有匹配或者低匹配度模式情况下,添加知识库内容。 // 系统提示词过滤,最多 2500 tokens const systemPrompt = systemPromptFilter(formatRedisPrompt, 2500); prompts.unshift({ obj: 'SYSTEM', value: `${model.systemPrompt} 用知识库内容回答,知识库内容为: "当前时间:${dayjs().format( 'YYYY/MM/DD HH:mm:ss' )} ${systemPrompt}"` }); } // 格式化文本内容成 chatgpt 格式 const map = { Human: ChatCompletionRequestMessageRoleEnum.User, AI: ChatCompletionRequestMessageRoleEnum.Assistant, SYSTEM: ChatCompletionRequestMessageRoleEnum.System }; const formatPrompts: ChatCompletionRequestMessage[] = prompts.map((item: ChatItemType) => ({ role: map[item.obj], content: item.value })); // console.log(formatPrompts); // 计算温度 const temperature = modelConstantsData.maxTemperature * (model.temperature / 10); // 发出请求 const chatResponse = await chatAPI.createChatCompletion( { model: model.service.chatModel, temperature: temperature, messages: formatPrompts, frequency_penalty: 0.5, // 越大,重复内容越少 presence_penalty: -0.5, // 越大,越容易出现新内容 stream: isStream }, { timeout: 120000, responseType: isStream ? 'stream' : 'json', httpsAgent: httpsAgent(true) } ); console.log('api response time:', `${(Date.now() - startTime) / 1000}s`); step = 1; let responseContent = ''; if (isStream) { const streamResponse = await gpt35StreamResponse({ res, stream, chatResponse }); responseContent = streamResponse.responseContent; } else { responseContent = chatResponse.data.choices?.[0]?.message?.content || ''; jsonRes(res, { data: responseContent }); } const promptsContent = formatPrompts.map((item) => item.content).join(''); pushChatBill({ isPay: true, modelName: model.service.modelName, userId, text: promptsContent + responseContent }); // jsonRes(res); } catch (err: any) { if (step === 1) { // 直接结束流 console.log('error,结束'); stream.destroy(); } else { res.status(500); jsonRes(res, { code: 500, error: err }); } } }