import type { NextApiRequest, NextApiResponse } from 'next'; import { connectToDatabase } from '@/service/mongo'; import { getOpenAIApi, authChat } from '@/service/utils/auth'; import { axiosConfig, openaiChatFilter, systemPromptFilter } from '@/service/utils/tools'; import { ChatItemSimpleType } from '@/types/chat'; import { jsonRes } from '@/service/response'; import { PassThrough } from 'stream'; import { modelList, ModelVectorSearchModeMap, ModelVectorSearchModeEnum } from '@/constants/model'; import { pushChatBill } from '@/service/events/pushBill'; import { gpt35StreamResponse } from '@/service/utils/openai'; import { searchKb_openai } from '@/service/tools/searchKb'; /* 发送提示词 */ export default async function handler(req: NextApiRequest, res: NextApiResponse) { let step = 0; // step=1时,表示开始了流响应 const stream = new PassThrough(); stream.on('error', () => { console.log('error: ', 'stream error'); stream.destroy(); }); res.on('close', () => { stream.destroy(); }); res.on('error', () => { console.log('error: ', 'request error'); stream.destroy(); }); try { const { chatId, prompt, modelId } = req.body as { prompt: ChatItemSimpleType; modelId: string; chatId: '' | string; }; const { authorization } = req.headers; if (!modelId || !prompt) { throw new Error('缺少参数'); } await connectToDatabase(); let startTime = Date.now(); const { model, content, userApiKey, systemKey, userId } = await authChat({ modelId, chatId, authorization }); const modelConstantsData = modelList.find((item) => item.chatModel === model.chat.chatModel); if (!modelConstantsData) { throw new Error('模型加载异常'); } // 读取对话内容 const prompts = [...content, prompt]; // 使用了知识库搜索 if (model.chat.useKb) { const { systemPrompts } = await searchKb_openai({ apiKey: userApiKey || systemKey, isPay: !userApiKey, text: prompt.value, similarity: ModelVectorSearchModeMap[model.chat.searchMode]?.similarity || 0.22, modelId, userId }); // filter system prompt if ( systemPrompts.length === 0 && model.chat.searchMode === ModelVectorSearchModeEnum.hightSimilarity ) { return res.send('对不起,你的问题不在知识库中。'); } /* 高相似度+无上下文,不添加额外知识,仅用系统提示词 */ if ( systemPrompts.length === 0 && model.chat.searchMode === ModelVectorSearchModeEnum.noContext ) { prompts.unshift({ obj: 'SYSTEM', value: model.chat.systemPrompt }); } else { // 有匹配情况下,system 添加知识库内容。 // 系统提示词过滤,最多 2500 tokens const filterSystemPrompt = systemPromptFilter({ model: model.chat.chatModel, prompts: systemPrompts, maxTokens: 2500 }); prompts.unshift({ obj: 'SYSTEM', value: ` ${model.chat.systemPrompt} ${ model.chat.searchMode === ModelVectorSearchModeEnum.hightSimilarity ? `不回答知识库外的内容.` : '' } 知识库内容为: ${filterSystemPrompt}' ` }); } } else { // 没有用知识库搜索,仅用系统提示词 if (model.chat.systemPrompt) { prompts.unshift({ obj: 'SYSTEM', value: model.chat.systemPrompt }); } } // 控制总 tokens 数量,防止超出 const filterPrompts = openaiChatFilter({ model: model.chat.chatModel, prompts, maxTokens: modelConstantsData.contextMaxToken - 300 }); // 计算温度 const temperature = (modelConstantsData.maxTemperature * (model.chat.temperature / 10)).toFixed( 2 ); // console.log(filterPrompts); // 获取 chatAPI const chatAPI = getOpenAIApi(userApiKey || systemKey); // 发出请求 const chatResponse = await chatAPI.createChatCompletion( { model: model.chat.chatModel, temperature: Number(temperature) || 0, messages: filterPrompts, frequency_penalty: 0.5, // 越大,重复内容越少 presence_penalty: -0.5, // 越大,越容易出现新内容 stream: true, stop: ['.!?。'] }, { timeout: 40000, responseType: 'stream', ...axiosConfig() } ); console.log('api response time:', `${(Date.now() - startTime) / 1000}s`); step = 1; const { responseContent } = await gpt35StreamResponse({ res, stream, chatResponse }); // 只有使用平台的 key 才计费 pushChatBill({ isPay: !userApiKey, chatModel: model.chat.chatModel, userId, chatId, messages: filterPrompts.concat({ role: 'assistant', content: responseContent }) }); } catch (err: any) { if (step === 1) { // 直接结束流 console.log('error,结束'); stream.destroy(); } else { res.status(500); jsonRes(res, { code: 500, error: err }); } } }