FastGPT/src/service/events/generateQA.ts
2023-05-04 10:53:55 +08:00

200 lines
5.8 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { SplitData } from '@/service/mongo';
import { getApiKey } from '../utils/auth';
import { OpenAiChatEnum } from '@/constants/model';
import { pushSplitDataBill } from '@/service/events/pushBill';
import { generateVector } from './generateVector';
import { openaiError2 } from '../errorCode';
import { PgClient } from '@/service/pg';
import { ModelSplitDataSchema } from '@/types/mongoSchema';
import { modelServiceToolMap } from '../utils/chat';
import { ChatRoleEnum } from '@/constants/chat';
export async function generateQA(next = false): Promise<any> {
if (process.env.queueTask !== '1') {
try {
fetch(process.env.parentUrl || '');
} catch (error) {
console.log('parentUrl fetch error', error);
}
return;
}
if (global.generatingQA === true && !next) return;
global.generatingQA = true;
let dataId = null;
try {
// 找出一个需要生成的 dataItem
const data = await SplitData.aggregate([
{ $match: { textList: { $exists: true, $ne: [] } } },
{ $sample: { size: 1 } }
]);
const dataItem: ModelSplitDataSchema = data[0];
if (!dataItem) {
console.log('没有需要生成 QA 的数据');
global.generatingQA = false;
return;
}
dataId = dataItem._id;
// 获取 5 个源文本
const textList: string[] = dataItem.textList.slice(-5);
// 获取 openapi Key
let userOpenAiKey = '',
systemAuthKey = '';
try {
const key = await getApiKey({ model: OpenAiChatEnum.GPT35, userId: dataItem.userId });
userOpenAiKey = key.userOpenAiKey;
systemAuthKey = key.systemAuthKey;
} catch (error: any) {
if (error?.code === 501) {
// 余额不够了, 清空该记录
await SplitData.findByIdAndUpdate(dataItem._id, {
textList: [],
errorText: error.message
});
throw new Error(error?.message);
}
throw new Error('获取 openai key 失败');
}
console.log(`正在生成一组QA, 包含 ${textList.length} 组文本。ID: ${dataItem._id}`);
const startTime = Date.now();
// 请求 chatgpt 获取回答
const response = await Promise.allSettled(
textList.map((text) =>
modelServiceToolMap[OpenAiChatEnum.GPT35]
.chatCompletion({
apiKey: userOpenAiKey || systemAuthKey,
temperature: 0.8,
messages: [
{
obj: ChatRoleEnum.System,
value: `你是出题人
${dataItem.prompt || '下面是"一段长文本"'}
从中选出5至20个题目和答案.答案详细.按格式返回: Q1:
A1:
Q2:
A2:
...`
},
{
obj: 'Human',
value: text
}
],
stream: false
})
.then(({ totalTokens, responseText, responseMessages }) => {
const result = formatSplitText(responseText); // 格式化后的QA对
console.log(`split result length: `, result.length);
// 计费
pushSplitDataBill({
isPay: !userOpenAiKey && result.length > 0,
userId: dataItem.userId,
type: 'QA',
textLen: responseMessages.map((item) => item.value).join('').length,
totalTokens
});
return {
rawContent: responseText,
result
};
})
.catch((err) => {
console.log('QA拆分错误');
console.log(err.response?.status, err.response?.statusText, err.response?.data);
return Promise.reject(err);
})
)
);
// 获取成功的回答
const successResponse: {
rawContent: string;
result: {
q: string;
a: string;
}[];
}[] = response.filter((item) => item.status === 'fulfilled').map((item: any) => item.value);
const resultList = successResponse.map((item) => item.result).flat();
await Promise.allSettled([
SplitData.findByIdAndUpdate(dataItem._id, {
textList: dataItem.textList.slice(0, -5)
}), // 删掉后5个数据
// 生成的内容插入 pg
PgClient.insert('modelData', {
values: resultList.map((item) => [
{ key: 'user_id', value: dataItem.userId },
{ key: 'model_id', value: dataItem.modelId },
{ key: 'q', value: item.q },
{ key: 'a', value: item.a },
{ key: 'status', value: 'waiting' }
])
})
]);
console.log('生成QA成功time:', `${(Date.now() - startTime) / 1000}s`);
generateQA(true);
generateVector();
} catch (error: any) {
// log
if (error?.response) {
console.log('openai error: 生成QA错误');
console.log(error.response?.status, error.response?.statusText, error.response?.data);
} else {
console.log('生成QA错误:', error);
}
// 没有余额或者凭证错误时,拒绝任务
if (dataId && openaiError2[error?.response?.data?.error?.type]) {
console.log(openaiError2[error?.response?.data?.error?.type], '删除QA任务');
await SplitData.findByIdAndUpdate(dataId, {
textList: [],
errorText: 'api 余额不足'
});
generateQA(true);
return;
}
setTimeout(() => {
generateQA(true);
}, 4000);
}
}
/**
* 检查文本是否按格式返回
*/
function formatSplitText(text: string) {
const regex = /Q\d+:(\s*)(.*)(\s*)A\d+:(\s*)([\s\S]*?)(?=Q|$)/g; // 匹配Q和A的正则表达式
const matches = text.matchAll(regex); // 获取所有匹配到的结果
const result = []; // 存储最终的结果
for (const match of matches) {
const q = match[2];
const a = match[5];
if (q && a) {
// 如果Q和A都存在就将其添加到结果中
result.push({
q,
a: a.trim().replace(/\n\s*/g, '\n')
});
}
}
return result;
}