200 lines
5.8 KiB
TypeScript
200 lines
5.8 KiB
TypeScript
import { SplitData } from '@/service/mongo';
|
||
import { getApiKey } from '../utils/auth';
|
||
import { OpenAiChatEnum } from '@/constants/model';
|
||
import { pushSplitDataBill } from '@/service/events/pushBill';
|
||
import { generateVector } from './generateVector';
|
||
import { openaiError2 } from '../errorCode';
|
||
import { PgClient } from '@/service/pg';
|
||
import { ModelSplitDataSchema } from '@/types/mongoSchema';
|
||
import { modelServiceToolMap } from '../utils/chat';
|
||
import { ChatRoleEnum } from '@/constants/chat';
|
||
|
||
export async function generateQA(next = false): Promise<any> {
|
||
if (process.env.queueTask !== '1') {
|
||
try {
|
||
fetch(process.env.parentUrl || '');
|
||
} catch (error) {
|
||
console.log('parentUrl fetch error', error);
|
||
}
|
||
return;
|
||
}
|
||
if (global.generatingQA === true && !next) return;
|
||
|
||
global.generatingQA = true;
|
||
|
||
let dataId = null;
|
||
|
||
try {
|
||
// 找出一个需要生成的 dataItem
|
||
const data = await SplitData.aggregate([
|
||
{ $match: { textList: { $exists: true, $ne: [] } } },
|
||
{ $sample: { size: 1 } }
|
||
]);
|
||
|
||
const dataItem: ModelSplitDataSchema = data[0];
|
||
|
||
if (!dataItem) {
|
||
console.log('没有需要生成 QA 的数据');
|
||
global.generatingQA = false;
|
||
return;
|
||
}
|
||
|
||
dataId = dataItem._id;
|
||
|
||
// 获取 5 个源文本
|
||
const textList: string[] = dataItem.textList.slice(-5);
|
||
|
||
// 获取 openapi Key
|
||
let userOpenAiKey = '',
|
||
systemAuthKey = '';
|
||
try {
|
||
const key = await getApiKey({ model: OpenAiChatEnum.GPT35, userId: dataItem.userId });
|
||
userOpenAiKey = key.userOpenAiKey;
|
||
systemAuthKey = key.systemAuthKey;
|
||
} catch (error: any) {
|
||
if (error?.code === 501) {
|
||
// 余额不够了, 清空该记录
|
||
await SplitData.findByIdAndUpdate(dataItem._id, {
|
||
textList: [],
|
||
errorText: error.message
|
||
});
|
||
throw new Error(error?.message);
|
||
}
|
||
|
||
throw new Error('获取 openai key 失败');
|
||
}
|
||
|
||
console.log(`正在生成一组QA, 包含 ${textList.length} 组文本。ID: ${dataItem._id}`);
|
||
|
||
const startTime = Date.now();
|
||
|
||
// 请求 chatgpt 获取回答
|
||
const response = await Promise.allSettled(
|
||
textList.map((text) =>
|
||
modelServiceToolMap[OpenAiChatEnum.GPT35]
|
||
.chatCompletion({
|
||
apiKey: userOpenAiKey || systemAuthKey,
|
||
temperature: 0.8,
|
||
messages: [
|
||
{
|
||
obj: ChatRoleEnum.System,
|
||
value: `你是出题人
|
||
${dataItem.prompt || '下面是"一段长文本"'}
|
||
从中选出5至20个题目和答案.答案详细.按格式返回: Q1:
|
||
A1:
|
||
Q2:
|
||
A2:
|
||
...`
|
||
},
|
||
{
|
||
obj: 'Human',
|
||
value: text
|
||
}
|
||
],
|
||
stream: false
|
||
})
|
||
.then(({ totalTokens, responseText, responseMessages }) => {
|
||
const result = formatSplitText(responseText); // 格式化后的QA对
|
||
console.log(`split result length: `, result.length);
|
||
// 计费
|
||
pushSplitDataBill({
|
||
isPay: !userOpenAiKey && result.length > 0,
|
||
userId: dataItem.userId,
|
||
type: 'QA',
|
||
textLen: responseMessages.map((item) => item.value).join('').length,
|
||
totalTokens
|
||
});
|
||
return {
|
||
rawContent: responseText,
|
||
result
|
||
};
|
||
})
|
||
.catch((err) => {
|
||
console.log('QA拆分错误');
|
||
console.log(err.response?.status, err.response?.statusText, err.response?.data);
|
||
return Promise.reject(err);
|
||
})
|
||
)
|
||
);
|
||
|
||
// 获取成功的回答
|
||
const successResponse: {
|
||
rawContent: string;
|
||
result: {
|
||
q: string;
|
||
a: string;
|
||
}[];
|
||
}[] = response.filter((item) => item.status === 'fulfilled').map((item: any) => item.value);
|
||
|
||
const resultList = successResponse.map((item) => item.result).flat();
|
||
|
||
await Promise.allSettled([
|
||
SplitData.findByIdAndUpdate(dataItem._id, {
|
||
textList: dataItem.textList.slice(0, -5)
|
||
}), // 删掉后5个数据
|
||
// 生成的内容插入 pg
|
||
PgClient.insert('modelData', {
|
||
values: resultList.map((item) => [
|
||
{ key: 'user_id', value: dataItem.userId },
|
||
{ key: 'model_id', value: dataItem.modelId },
|
||
{ key: 'q', value: item.q },
|
||
{ key: 'a', value: item.a },
|
||
{ key: 'status', value: 'waiting' }
|
||
])
|
||
})
|
||
]);
|
||
console.log('生成QA成功,time:', `${(Date.now() - startTime) / 1000}s`);
|
||
|
||
generateQA(true);
|
||
generateVector();
|
||
} catch (error: any) {
|
||
// log
|
||
if (error?.response) {
|
||
console.log('openai error: 生成QA错误');
|
||
console.log(error.response?.status, error.response?.statusText, error.response?.data);
|
||
} else {
|
||
console.log('生成QA错误:', error);
|
||
}
|
||
|
||
// 没有余额或者凭证错误时,拒绝任务
|
||
if (dataId && openaiError2[error?.response?.data?.error?.type]) {
|
||
console.log(openaiError2[error?.response?.data?.error?.type], '删除QA任务');
|
||
|
||
await SplitData.findByIdAndUpdate(dataId, {
|
||
textList: [],
|
||
errorText: 'api 余额不足'
|
||
});
|
||
|
||
generateQA(true);
|
||
return;
|
||
}
|
||
|
||
setTimeout(() => {
|
||
generateQA(true);
|
||
}, 4000);
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 检查文本是否按格式返回
|
||
*/
|
||
function formatSplitText(text: string) {
|
||
const regex = /Q\d+:(\s*)(.*)(\s*)A\d+:(\s*)([\s\S]*?)(?=Q|$)/g; // 匹配Q和A的正则表达式
|
||
const matches = text.matchAll(regex); // 获取所有匹配到的结果
|
||
|
||
const result = []; // 存储最终的结果
|
||
for (const match of matches) {
|
||
const q = match[2];
|
||
const a = match[5];
|
||
if (q && a) {
|
||
// 如果Q和A都存在,就将其添加到结果中
|
||
result.push({
|
||
q,
|
||
a: a.trim().replace(/\n\s*/g, '\n')
|
||
});
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|