2023-09-02 00:28:08 +08:00

390 lines
9.7 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import type { NextApiResponse } from 'next';
import { sseResponse } from '@/service/utils/tools';
import { adaptChatItem_openAI, countOpenAIToken } from '@/utils/plugin/openai';
import { modelToolMap } from '@/utils/plugin';
import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatItemType, QuoteItemType } from '@/types/chat';
import type { ChatHistoryItemResType } from '@/types/chat';
import { ChatModuleEnum, ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { SSEParseData, parseStreamChunk } from '@/utils/sse';
import { textAdaptGptResponse } from '@/utils/adapt';
import { getAIChatApi, axiosConfig } from '@/service/ai/openai';
import { TaskResponseKeyEnum } from '@/constants/chat';
import { getChatModel } from '@/service/utils/data';
import { countModelPrice } from '@/service/events/pushBill';
import { ChatModelItemType } from '@/types/model';
import { UserModelSchema } from '@/types/mongoSchema';
import { textCensor } from '@/api/service/plugins';
import { ChatCompletionRequestMessageRoleEnum } from 'openai';
import { AppModuleItemType } from '@/types/app';
export type ChatProps = {
res: NextApiResponse;
model: string;
temperature?: number;
maxToken?: number;
history?: ChatItemType[];
userChatInput: string;
stream?: boolean;
detail?: boolean;
quoteQA?: QuoteItemType[];
systemPrompt?: string;
limitPrompt?: string;
userOpenaiAccount: UserModelSchema['openaiAccount'];
outputs: AppModuleItemType['outputs'];
};
export type ChatResponse = {
[TaskResponseKeyEnum.answerText]: string;
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
finish: boolean;
};
/* request openai chat */
export const dispatchChatCompletion = async (props: Record<string, any>): Promise<ChatResponse> => {
let {
res,
model = global.chatModels[0]?.model,
temperature = 0,
maxToken = 4000,
stream = false,
detail = false,
history = [],
quoteQA = [],
userChatInput,
systemPrompt = '',
limitPrompt = '',
userOpenaiAccount,
outputs
} = props as ChatProps;
if (!userChatInput) {
return Promise.reject('Question is empty');
}
// temperature adapt
const modelConstantsData = getChatModel(model);
if (!modelConstantsData) {
return Promise.reject('The chat model is undefined, you need to select a chat model.');
}
const { filterQuoteQA, quotePrompt, hasQuoteOutput } = filterQuote({
quoteQA,
model: modelConstantsData
});
if (modelConstantsData.censor) {
await textCensor({
text: `${systemPrompt}
${quotePrompt}
${limitPrompt}
${userChatInput}
`
});
}
const { messages, filterMessages } = getChatMessages({
model: modelConstantsData,
history,
quotePrompt,
userChatInput,
systemPrompt,
limitPrompt,
hasQuoteOutput
});
const { max_tokens } = getMaxTokens({
model: modelConstantsData,
maxToken,
filterMessages
});
// console.log(messages);
// FastGPT temperature range: 1~10
temperature = +(modelConstantsData.maxTemperature * (temperature / 10)).toFixed(2);
temperature = Math.max(temperature, 0.01);
const chatAPI = getAIChatApi(userOpenaiAccount);
const response = await chatAPI.createChatCompletion(
{
model,
temperature,
max_tokens,
messages: [
...(modelConstantsData.defaultSystem
? [
{
role: ChatCompletionRequestMessageRoleEnum.System,
content: modelConstantsData.defaultSystem
}
]
: []),
...messages
],
// frequency_penalty: 0.5, // 越大,重复内容越少
// presence_penalty: -0.5, // 越大,越容易出现新内容
stream
},
{
timeout: stream ? 120000 : 480000,
responseType: stream ? 'stream' : 'json',
...axiosConfig(userOpenaiAccount)
}
);
const { answerText, totalTokens, completeMessages } = await (async () => {
if (stream) {
// sse response
const { answer } = await streamResponse({
res,
detail,
response
});
// count tokens
const completeMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
const totalTokens = countOpenAIToken({
messages: completeMessages
});
targetResponse({ res, detail, outputs });
return {
answerText: answer,
totalTokens,
completeMessages
};
} else {
const answer = stream ? '' : response.data.choices?.[0].message?.content || '';
const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
const completeMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
return {
answerText: answer,
totalTokens,
completeMessages
};
}
})();
return {
[TaskResponseKeyEnum.answerText]: answerText,
[TaskResponseKeyEnum.responseData]: {
moduleName: ChatModuleEnum.AIChat,
price: userOpenaiAccount?.key ? 0 : countModelPrice({ model, tokens: totalTokens }),
model: modelConstantsData.name,
tokens: totalTokens,
question: userChatInput,
answer: answerText,
maxToken: max_tokens,
quoteList: filterQuoteQA,
completeMessages
},
finish: true
};
};
function filterQuote({
quoteQA = [],
model
}: {
quoteQA: ChatProps['quoteQA'];
model: ChatModelItemType;
}) {
const sliceResult = modelToolMap.tokenSlice({
maxToken: model.quoteMaxToken,
messages: quoteQA.map((item) => ({
obj: ChatRoleEnum.System,
value: item.a ? `${item.q}\n${item.a}` : item.q
}))
});
// slice filterSearch
const filterQuoteQA = quoteQA.slice(0, sliceResult.length);
const quotePrompt =
filterQuoteQA.length > 0
? `"""${filterQuoteQA
.map((item) =>
item.a ? `{instruction:"${item.q}",output:"${item.a}"}` : `{instruction:"${item.q}"}`
)
.join('\n')}"""`
: '';
return {
filterQuoteQA,
quotePrompt,
hasQuoteOutput: !!filterQuoteQA.find((item) => item.a)
};
}
function getChatMessages({
quotePrompt,
history = [],
systemPrompt,
limitPrompt,
userChatInput,
model,
hasQuoteOutput
}: {
quotePrompt: string;
history: ChatProps['history'];
systemPrompt: string;
limitPrompt: string;
userChatInput: string;
model: ChatModelItemType;
hasQuoteOutput: boolean;
}) {
const limitText = (() => {
if (!quotePrompt) {
return limitPrompt;
}
const defaultPrompt = `三引号引用的内容是我提供给你的知识它们拥有最高优先级。instruction 是相关介绍${
hasQuoteOutput ? 'output 是预期回答或补充' : ''
},使用引用内容来回答我下面的问题。`;
if (limitPrompt) {
return `${defaultPrompt}${limitPrompt}`;
}
return `${defaultPrompt}\n回答内容限制你仅回答三引号中提及的内容下面我提出的问题与引用内容无关时你可以直接回复: "你的问题没有在知识库中体现"`;
})();
const messages: ChatItemType[] = [
...(systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: systemPrompt
}
]
: []),
...(quotePrompt
? [
{
obj: ChatRoleEnum.System,
value: quotePrompt
}
]
: []),
...history,
...(limitText
? [
{
obj: ChatRoleEnum.System,
value: limitText
}
]
: []),
{
obj: ChatRoleEnum.Human,
value: userChatInput
}
];
const filterMessages = ChatContextFilter({
model: model.model,
prompts: messages,
maxTokens: Math.ceil(model.contextMaxToken - 300) // filter token. not response maxToken
});
const adaptMessages = adaptChatItem_openAI({ messages: filterMessages, reserveId: false });
return {
messages: adaptMessages,
filterMessages
};
}
function getMaxTokens({
maxToken,
model,
filterMessages = []
}: {
maxToken: number;
model: ChatModelItemType;
filterMessages: ChatProps['history'];
}) {
const tokensLimit = model.contextMaxToken;
/* count response max token */
const promptsToken = modelToolMap.countTokens({
messages: filterMessages
});
maxToken = maxToken + promptsToken > tokensLimit ? tokensLimit - promptsToken : maxToken;
return {
max_tokens: maxToken
};
}
function targetResponse({
res,
outputs,
detail
}: {
res: NextApiResponse;
outputs: AppModuleItemType['outputs'];
detail: boolean;
}) {
const targets =
outputs.find((output) => output.key === TaskResponseKeyEnum.answerText)?.targets || [];
if (targets.length === 0) return;
sseResponse({
res,
event: detail ? sseResponseEventEnum.answer : undefined,
data: textAdaptGptResponse({
text: '\n'
})
});
}
async function streamResponse({
res,
detail,
response
}: {
res: NextApiResponse;
detail: boolean;
response: any;
}) {
let answer = '';
let error: any = null;
const parseData = new SSEParseData();
try {
for await (const chunk of response.data as any) {
if (res.closed) break;
const parse = parseStreamChunk(chunk);
parse.forEach((item) => {
const { data } = parseData.parse(item);
if (!data || data === '[DONE]') return;
const content: string = data?.choices?.[0]?.delta?.content || '';
error = data.error;
answer += content;
sseResponse({
res,
event: detail ? sseResponseEventEnum.answer : undefined,
data: textAdaptGptResponse({
text: content
})
});
});
}
} catch (error) {
console.log('pipe error', error);
}
if (error) {
return Promise.reject(error);
}
return {
answer
};
}