* fix :Get application bound knowledge base information logical rewrite * fix :Get application bound knowledge base information logical rewrite * fix :Get application bound knowledge base information logical rewrite * fix :Get application bound knowledge base information logical rewrite
124 lines
3.5 KiB
TypeScript
124 lines
3.5 KiB
TypeScript
import { MongoDataset } from '../dataset/schema';
|
|
import { getEmbeddingModel } from '../ai/model';
|
|
import { FlowNodeTypeEnum } from '@fastgpt/global/core/workflow/node/constant';
|
|
import { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
|
import type { StoreNodeItemType } from '@fastgpt/global/core/workflow/type/node';
|
|
|
|
export type ListByAppIdAndDatasetIdsBody = {
|
|
teamId: string;
|
|
datasetIdList: string[];
|
|
};
|
|
|
|
interface Dataset {
|
|
datasetId: string;
|
|
[key: string]: any;
|
|
}
|
|
|
|
export async function listAppDatasetDataByTeamIdAndDatasetIds({
|
|
teamId,
|
|
datasetIdList
|
|
}: ListByAppIdAndDatasetIdsBody) {
|
|
const myDatasets = await MongoDataset.find({
|
|
teamId,
|
|
_id: { $in: datasetIdList }
|
|
}).lean();
|
|
|
|
return myDatasets.map((item) => ({
|
|
datasetId: item._id,
|
|
avatar: item.avatar,
|
|
name: item.name,
|
|
vectorModel: getEmbeddingModel(item.vectorModel)
|
|
}));
|
|
}
|
|
|
|
export async function rewriteAppWorkflowToDetail(nodes: StoreNodeItemType[], teamId: string) {
|
|
const datasetIdSet = new Set<string>();
|
|
|
|
nodes.forEach((node) => {
|
|
if (node.flowNodeType !== FlowNodeTypeEnum.datasetSearchNode) return;
|
|
|
|
const input = node.inputs.find((item) => item.key === NodeInputKeyEnum.datasetSelectList);
|
|
if (!input) return;
|
|
|
|
const rawValue = input.value as undefined | { datasetId: string }[] | { datasetId: string };
|
|
|
|
const datasetIds = Array.isArray(rawValue)
|
|
? rawValue
|
|
.map((v) => v?.datasetId)
|
|
.filter((id): id is string => !!id && typeof id === 'string')
|
|
: rawValue?.datasetId
|
|
? [String(rawValue.datasetId)]
|
|
: [];
|
|
|
|
if (datasetIds.length === 0) return;
|
|
|
|
datasetIds.forEach((id) => datasetIdSet.add(id));
|
|
});
|
|
|
|
if (datasetIdSet.size === 0) return;
|
|
|
|
const uniqueDatasetIds = Array.from(datasetIdSet);
|
|
const datasetList = await listAppDatasetDataByTeamIdAndDatasetIds({
|
|
teamId,
|
|
datasetIdList: uniqueDatasetIds
|
|
});
|
|
|
|
const datasetMap = new Map(
|
|
datasetList.map((ds) => [
|
|
String(ds.datasetId),
|
|
{
|
|
...ds,
|
|
vectorModel: getEmbeddingModel(ds.vectorModel.model)
|
|
}
|
|
])
|
|
);
|
|
|
|
nodes.forEach((node) => {
|
|
if (node.flowNodeType !== FlowNodeTypeEnum.datasetSearchNode) return;
|
|
|
|
const input = node.inputs.find((item) => item.key === NodeInputKeyEnum.datasetSelectList);
|
|
if (!input) return;
|
|
|
|
const rawValue = input.value as undefined | { datasetId: string }[] | { datasetId: string };
|
|
|
|
const datasetIds = Array.isArray(rawValue)
|
|
? rawValue
|
|
.map((v) => v?.datasetId)
|
|
.filter((id): id is string => !!id && typeof id === 'string')
|
|
: rawValue?.datasetId
|
|
? [String(rawValue.datasetId)]
|
|
: [];
|
|
|
|
if (datasetIds.length === 0) return;
|
|
|
|
input.value = datasetIds
|
|
.map((id) => {
|
|
const data = datasetMap.get(String(id));
|
|
return data
|
|
? {
|
|
datasetId: data.datasetId,
|
|
avatar: data.avatar,
|
|
name: data.name,
|
|
vectorModel: data.vectorModel
|
|
}
|
|
: undefined;
|
|
})
|
|
.filter((item): item is NonNullable<typeof item> => !!item);
|
|
});
|
|
}
|
|
|
|
export async function rewriteAppWorkflowToSimple(formatNodes: StoreNodeItemType[]) {
|
|
formatNodes.forEach((node) => {
|
|
if (node.flowNodeType !== FlowNodeTypeEnum.datasetSearchNode) return;
|
|
|
|
const datasetsInput = node.inputs.find(
|
|
(input) => input.key === NodeInputKeyEnum.datasetSelectList
|
|
);
|
|
if (datasetsInput?.value) {
|
|
datasetsInput.value = datasetsInput.value.map((dataset: Dataset) => ({
|
|
datasetId: dataset.datasetId
|
|
}));
|
|
}
|
|
});
|
|
}
|