94 lines
2.5 KiB
TypeScript
94 lines
2.5 KiB
TypeScript
import { getOpenAIApi } from '@/service/utils/chat';
|
||
import { httpsAgent } from '@/service/utils/tools';
|
||
import { ModelData } from '../models/modelData';
|
||
import { connectRedis } from '../redis';
|
||
import { VecModelDataIndex } from '@/constants/redis';
|
||
import { vectorToBuffer } from '@/utils/tools';
|
||
|
||
export async function generateVector(next = false): Promise<any> {
|
||
if (global.generatingVector && !next) return;
|
||
global.generatingVector = true;
|
||
|
||
try {
|
||
const redis = await connectRedis();
|
||
|
||
// 找出一个需要生成的 dataItem
|
||
const dataItem = await ModelData.findOne({
|
||
status: { $ne: 0 }
|
||
});
|
||
|
||
if (!dataItem) {
|
||
console.log('没有需要生成 【向量】 的数据');
|
||
global.generatingVector = false;
|
||
return;
|
||
}
|
||
|
||
// 获取 openapi Key
|
||
const openAiKey = process.env.OPENAIKEY as string;
|
||
|
||
// 获取 openai 请求实例
|
||
const chatAPI = getOpenAIApi(openAiKey);
|
||
|
||
const dataId = String(dataItem._id);
|
||
|
||
// 生成词向量
|
||
const response = await Promise.allSettled(
|
||
dataItem.q.map((item, i) =>
|
||
chatAPI
|
||
.createEmbedding(
|
||
{
|
||
model: 'text-embedding-ada-002',
|
||
input: item.text
|
||
},
|
||
{
|
||
timeout: 120000,
|
||
httpsAgent
|
||
}
|
||
)
|
||
.then((res) => res?.data?.data?.[0]?.embedding || [])
|
||
.then((vector) =>
|
||
redis.sendCommand([
|
||
'HMSET',
|
||
`${VecModelDataIndex}:${item.id}`,
|
||
'vector',
|
||
vectorToBuffer(vector),
|
||
'modelId',
|
||
String(dataItem.modelId),
|
||
'dataId',
|
||
String(dataId)
|
||
])
|
||
)
|
||
)
|
||
);
|
||
|
||
if (response.filter((item) => item.status === 'fulfilled').length === 0) {
|
||
throw new Error(JSON.stringify(response));
|
||
}
|
||
// 修改该数据状态
|
||
await ModelData.findByIdAndUpdate(dataItem._id, {
|
||
status: 0
|
||
});
|
||
|
||
console.log(`生成向量成功: ${dataItem._id}`);
|
||
|
||
setTimeout(() => {
|
||
generateVector(true);
|
||
}, 3000);
|
||
} catch (error: any) {
|
||
console.log(error);
|
||
console.log('error: 生成向量错误', error?.response?.data);
|
||
|
||
if (error?.response?.statusText === 'Too Many Requests') {
|
||
console.log('次数限制,1分钟后尝试');
|
||
// 限制次数,1分钟后再试
|
||
setTimeout(() => {
|
||
generateVector(true);
|
||
}, 60000);
|
||
}
|
||
|
||
setTimeout(() => {
|
||
generateVector(true);
|
||
}, 3000);
|
||
}
|
||
}
|