FastGPT/src/service/plugins/searchKb.ts
2023-05-17 22:24:36 +08:00

176 lines
4.9 KiB
TypeScript

import { PgClient } from '@/service/pg';
import { ModelDataStatusEnum, ModelVectorSearchModeEnum, ChatModelMap } from '@/constants/model';
import { ModelSchema } from '@/types/mongoSchema';
import { openaiCreateEmbedding } from '../utils/chat/openai';
import { ChatRoleEnum } from '@/constants/chat';
import { modelToolMap } from '@/utils/chat';
import { ChatItemSimpleType } from '@/types/chat';
/**
* use openai embedding search kb
*/
export const searchKb = async ({
userOpenAiKey,
prompts,
similarity = 0.2,
model,
userId
}: {
userOpenAiKey?: string;
prompts: ChatItemSimpleType[];
model: ModelSchema;
userId: string;
similarity?: number;
}): Promise<{
code: 200 | 201;
searchPrompts: {
obj: ChatRoleEnum;
value: string;
}[];
}> => {
async function search(textArr: string[] = []) {
const limitMap: Record<ModelVectorSearchModeEnum, number> = {
[ModelVectorSearchModeEnum.hightSimilarity]: 15,
[ModelVectorSearchModeEnum.noContext]: 15,
[ModelVectorSearchModeEnum.lowSimilarity]: 20
};
// 获取提示词的向量
const { vectors: promptVectors } = await openaiCreateEmbedding({
userOpenAiKey,
userId,
textArr
});
const searchRes = await Promise.all(
promptVectors.map((promptVector) =>
PgClient.select<{ id: string; q: string; a: string }>('modelData', {
fields: ['id', 'q', 'a'],
where: [
['status', ModelDataStatusEnum.ready],
'AND',
`kb_id IN (${model.chat.relatedKbs.map((item) => `'${item}'`).join(',')})`,
'AND',
`vector <=> '[${promptVector}]' < ${similarity}`
],
order: [{ field: 'vector', mode: `<=> '[${promptVector}]'` }],
limit: limitMap[model.chat.searchMode]
}).then((res) => res.rows)
)
);
// Remove repeat record
const idSet = new Set<string>();
const filterSearch = searchRes.map((search) =>
search.filter((item) => {
if (idSet.has(item.id)) {
return false;
}
idSet.add(item.id);
return true;
})
);
return filterSearch.map((item) => item.map((item) => `${item.q}\n${item.a}`).join('\n'));
}
const modelConstantsData = ChatModelMap[model.chat.chatModel];
// search three times
const userPrompts = prompts.filter((item) => item.obj === 'Human');
const searchArr: string[] = [
userPrompts[userPrompts.length - 1].value,
userPrompts[userPrompts.length - 2]?.value
].filter((item) => item);
const systemPrompts = await search(searchArr);
// filter system prompts.
const filterRateMap: Record<number, number[]> = {
1: [1],
2: [0.7, 0.3]
};
const filterRate = filterRateMap[systemPrompts.length] || filterRateMap[0];
// 计算固定提示词的 token 数量
const fixedPrompts = [
...(model.chat.systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: model.chat.systemPrompt
}
]
: []),
...(model.chat.searchMode === ModelVectorSearchModeEnum.noContext
? [
{
obj: ChatRoleEnum.System,
value: `知识库是关于"${model.name}"的内容,根据知识库内容回答问题.`
}
]
: [
{
obj: ChatRoleEnum.System,
value: `玩一个问答游戏,规则为:
1.你完全忘记你已有的知识
2.你只回答关于"${model.name}"的问题
3.你只从知识库中选择内容进行回答
4.如果问题不在知识库中,你会回答:"我不知道。"
请务必遵守规则`
}
])
];
const fixedSystemTokens = modelToolMap[model.chat.chatModel].countTokens({
messages: fixedPrompts
});
const maxTokens = modelConstantsData.systemMaxToken - fixedSystemTokens;
const filterSystemPrompt = filterRate
.map((rate, i) =>
modelToolMap[model.chat.chatModel].sliceText({
text: systemPrompts[i],
length: Math.floor(maxTokens * rate)
})
)
.join('\n')
.trim();
/* 高相似度+不回复 */
if (!filterSystemPrompt && model.chat.searchMode === ModelVectorSearchModeEnum.hightSimilarity) {
return {
code: 201,
searchPrompts: [
{
obj: ChatRoleEnum.System,
value: '对不起,你的问题不在知识库中。'
}
]
};
}
/* 高相似度+无上下文,不添加额外知识,仅用系统提示词 */
if (!filterSystemPrompt && model.chat.searchMode === ModelVectorSearchModeEnum.noContext) {
return {
code: 200,
searchPrompts: model.chat.systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: model.chat.systemPrompt
}
]
: []
};
}
/* 有匹配 */
return {
code: 200,
searchPrompts: [
{
obj: ChatRoleEnum.System,
value: `知识库:${filterSystemPrompt}`
},
...fixedPrompts
]
};
};