2023-10-11 17:18:43 +08:00

105 lines
2.4 KiB
TypeScript

import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@/service/response';
import { authBalanceByUid, authUser } from '@/service/utils/auth';
import { withNextCors } from '@/service/utils/tools';
import { getAIApi } from '@fastgpt/core/ai/config';
import { pushGenerateVectorBill } from '@/service/common/bill/push';
type Props = {
model: string;
input: string[];
billId?: string;
};
type Response = {
tokenLen: number;
vectors: number[][];
};
export default withNextCors(async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
const { userId } = await authUser({ req, authToken: true });
let { input, model } = req.query as Props;
if (!Array.isArray(input)) {
throw new Error('缺少参数');
}
jsonRes<Response>(res, {
data: await getVector({ userId, input, model })
});
} catch (err) {
console.log(err);
jsonRes(res, {
code: 500,
error: err
});
}
});
export async function getVector({
model = 'text-embedding-ada-002',
userId,
input,
billId
}: { userId?: string } & Props) {
userId && (await authBalanceByUid(userId));
for (let i = 0; i < input.length; i++) {
if (!input[i]) {
return Promise.reject({
code: 500,
message: '向量生成模块输入内容为空'
});
}
}
// 获取 chatAPI
const ai = getAIApi();
// 把输入的内容转成向量
const result = await ai.embeddings
.create(
{
model,
input
},
{
timeout: 60000
}
)
.then(async (res) => {
if (!res.data) {
return Promise.reject('Embedding API 404');
}
if (!res?.data?.[0]?.embedding) {
console.log(res?.data);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}
return {
tokenLen: res.usage.total_tokens || 0,
vectors: await Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
};
});
userId &&
pushGenerateVectorBill({
userId,
tokenLen: result.tokenLen,
model,
billId
});
return result;
}
function unityDimensional(vector: number[]) {
if (vector.length > 1536) return Promise.reject('向量维度不能超过 1536');
let resultVector = vector;
const vectorLen = vector.length;
const zeroVector = new Array(1536 - vectorLen).fill(0);
return resultVector.concat(zeroVector);
}