2023-07-25 13:22:37 +08:00

266 lines
6.5 KiB
TypeScript

// Next.js API route support: https://nextjs.org/docs/api-routes/introduction
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes, sseErrRes } from '@/service/response';
import { sseResponse } from '@/service/utils/tools';
import { OpenAiChatEnum } from '@/constants/model';
import { adaptChatItem_openAI, countOpenAIToken } from '@/utils/plugin/openai';
import { modelToolMap } from '@/utils/plugin';
import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatItemType } from '@/types/chat';
import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { parseStreamChunk, textAdaptGptResponse } from '@/utils/adapt';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import { SpecificInputEnum } from '@/constants/app';
import { getChatModel } from '@/service/utils/data';
import { countModelPrice, pushTaskBillListItem } from '@/service/events/pushBill';
import { authUser } from '@/service/utils/auth';
export type Props = {
model: `${OpenAiChatEnum}`;
temperature?: number;
maxToken?: number;
history?: ChatItemType[];
userChatInput: string;
stream?: boolean;
quotePrompt?: string;
systemPrompt?: string;
limitPrompt?: string;
billId?: string;
};
export type Response = { [SpecificInputEnum.answerText]: string; totalTokens: number };
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
let { model, temperature = 0, stream } = req.body as Props;
try {
await authUser({ req, authRoot: true });
const response = await chatCompletion({
...req.body,
res,
model
});
if (stream) {
sseResponse({
res,
event: sseResponseEventEnum.moduleFetchResponse,
data: JSON.stringify(response)
});
res.end();
} else {
jsonRes(res, {
data: response
});
}
} catch (err) {
if (stream) {
res.status(500);
sseErrRes(res, err);
res.end();
} else {
jsonRes(res, {
code: 500,
error: err
});
}
}
}
/* request openai chat */
export async function chatCompletion({
res,
model,
temperature = 0,
maxToken = 4000,
stream = false,
history = [],
quotePrompt = '',
userChatInput,
systemPrompt = '',
limitPrompt = '',
billId
}: Props & { res: NextApiResponse }): Promise<Response> {
// temperature adapt
const modelConstantsData = getChatModel(model);
if (!modelConstantsData) {
return Promise.reject('The chat model is undefined');
}
// FastGpt temperature range: 1~10
temperature = +(modelConstantsData.maxTemperature * (temperature / 10)).toFixed(2);
const messages: ChatItemType[] = [
...(quotePrompt
? [
{
obj: ChatRoleEnum.System,
value: quotePrompt
}
]
: []),
...(systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: systemPrompt
}
]
: []),
...history,
...(limitPrompt
? [
{
obj: ChatRoleEnum.Human,
value: limitPrompt
}
]
: []),
{
obj: ChatRoleEnum.Human,
value: userChatInput
}
];
const modelTokenLimit = getChatModel(model)?.contextMaxToken || 4000;
const filterMessages = ChatContextFilter({
model,
prompts: messages,
maxTokens: Math.ceil(modelTokenLimit - 300) // filter token. not response maxToken
});
const adaptMessages = adaptChatItem_openAI({ messages: filterMessages, reserveId: false });
const chatAPI = getOpenAIApi();
/* count response max token */
const promptsToken = modelToolMap.countTokens({
model,
messages: filterMessages
});
maxToken = maxToken + promptsToken > modelTokenLimit ? modelTokenLimit - promptsToken : maxToken;
const response = await chatAPI.createChatCompletion(
{
model,
temperature: Number(temperature || 0),
max_tokens: maxToken,
messages: adaptMessages,
// frequency_penalty: 0.5, // 越大,重复内容越少
// presence_penalty: -0.5, // 越大,越容易出现新内容
stream
},
{
timeout: stream ? 60000 : 480000,
responseType: stream ? 'stream' : 'json',
...axiosConfig()
}
);
const { answer, totalTokens } = await (async () => {
if (stream) {
// sse response
const { answer } = await streamResponse({ res, response });
// count tokens
const finishMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
const totalTokens = countOpenAIToken({
messages: finishMessages,
model: 'gpt-3.5-turbo-16k'
});
return {
answer,
totalTokens
};
} else {
const answer = stream ? '' : response.data.choices?.[0].message?.content || '';
const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
return {
answer,
totalTokens
};
}
})();
await pushTaskBillListItem({
billId,
moduleName: 'AI Chat',
amount: countModelPrice({ model, tokens: totalTokens }),
model: modelConstantsData.name,
tokenLen: totalTokens
});
return {
answerText: answer,
totalTokens
};
}
async function streamResponse({ res, response }: { res: NextApiResponse; response: any }) {
let answer = '';
let error: any = null;
const clientRes = async (data: string) => {
const { content = '' } = (() => {
try {
const json = JSON.parse(data);
const content: string = json?.choices?.[0].delta.content || '';
error = json.error;
answer += content;
return { content };
} catch (error) {
return {};
}
})();
if (res.closed || error) return;
if (data === '[DONE]') {
sseResponse({
res,
event: sseResponseEventEnum.answer,
data: textAdaptGptResponse({
text: null,
finish_reason: 'stop'
})
});
sseResponse({
res,
event: sseResponseEventEnum.answer,
data: '[DONE]'
});
} else {
sseResponse({
res,
event: sseResponseEventEnum.answer,
data: textAdaptGptResponse({
text: content
})
});
}
};
try {
for await (const chunk of response.data as any) {
if (res.closed) break;
const parse = parseStreamChunk(chunk);
parse.forEach((item) => clientRes(item.data));
}
} catch (error) {
console.log('pipe error', error);
}
if (error) {
console.log(error);
return Promise.reject(error);
}
return {
answer
};
}