update embeddings
This commit is contained in:
parent
c71a13a659
commit
f1ecc16c26
@ -258,6 +258,8 @@ export const InlineEdit: React.FC<InlineEditProps> = ({
|
||||
let fileContent: string;
|
||||
try {
|
||||
fileContent = await plugin.app.vault.cachedRead(activeFile);
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
fileContent = fileContent.replace(/\0/g, '');
|
||||
} catch (err) {
|
||||
const error = err as Error;
|
||||
console.error(t("inlineEdit.readFileError"), error.message);
|
||||
@ -278,7 +280,9 @@ export const InlineEdit: React.FC<InlineEditProps> = ({
|
||||
return;
|
||||
}
|
||||
|
||||
const oldContent = await plugin.app.vault.read(activeFile);
|
||||
let oldContent = await plugin.app.vault.read(activeFile);
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
oldContent = oldContent.replace(/\0/g, '');
|
||||
await plugin.app.workspace.getLeaf(true).setViewState({
|
||||
type: APPLY_VIEW_TYPE,
|
||||
active: true,
|
||||
|
||||
@ -56,7 +56,9 @@ export async function matchSearchUsingCorePlugin(
|
||||
break;
|
||||
}
|
||||
|
||||
const content = await vault.cachedRead(file as TFile);
|
||||
let content = await vault.cachedRead(file as TFile);
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
content = content.replace(/\0/g, '');
|
||||
const lines = content.split('\n');
|
||||
|
||||
// `fileMatches.result.content` holds an array of matches for the file.
|
||||
|
||||
@ -52,6 +52,29 @@ export class VectorManager {
|
||||
)
|
||||
}
|
||||
|
||||
// 强制垃圾回收的辅助方法
|
||||
private forceGarbageCollection() {
|
||||
try {
|
||||
if (typeof global !== 'undefined' && global.gc) {
|
||||
global.gc()
|
||||
} else if (typeof window !== 'undefined' && (window as any).gc) {
|
||||
(window as any).gc()
|
||||
}
|
||||
} catch (e) {
|
||||
// 忽略垃圾回收错误
|
||||
}
|
||||
}
|
||||
|
||||
// 检查并清理内存的辅助方法
|
||||
private async memoryCleanup(batchCount: number) {
|
||||
// 每10批次强制垃圾回收
|
||||
if (batchCount % 10 === 0) {
|
||||
this.forceGarbageCollection()
|
||||
// 短暂延迟让内存清理完成
|
||||
await new Promise(resolve => setTimeout(resolve, 100))
|
||||
}
|
||||
}
|
||||
|
||||
async updateVaultIndex(
|
||||
embeddingModel: EmbeddingModel,
|
||||
options: {
|
||||
@ -100,29 +123,43 @@ export class VectorManager {
|
||||
},
|
||||
)
|
||||
|
||||
const skippedFiles: string[] = []
|
||||
const contentChunks: InsertVector[] = (
|
||||
await Promise.all(
|
||||
filesToIndex.map(async (file) => {
|
||||
const fileContent = await this.app.vault.cachedRead(file)
|
||||
const fileDocuments = await textSplitter.createDocuments([
|
||||
fileContent,
|
||||
])
|
||||
return fileDocuments.map((chunk): InsertVector => {
|
||||
return {
|
||||
path: file.path,
|
||||
mtime: file.stat.mtime,
|
||||
content: chunk.pageContent,
|
||||
embedding: [],
|
||||
metadata: {
|
||||
startLine: Number(chunk.metadata.loc.lines.from),
|
||||
endLine: Number(chunk.metadata.loc.lines.to),
|
||||
},
|
||||
}
|
||||
})
|
||||
try {
|
||||
let fileContent = await this.app.vault.cachedRead(file)
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
fileContent = fileContent.replace(/\0/g, '')
|
||||
const fileDocuments = await textSplitter.createDocuments([
|
||||
fileContent,
|
||||
])
|
||||
return fileDocuments.map((chunk): InsertVector => {
|
||||
return {
|
||||
path: file.path,
|
||||
mtime: file.stat.mtime,
|
||||
content: chunk.pageContent.replace(/\0/g, ''), // 再次清理,确保安全
|
||||
embedding: [],
|
||||
metadata: {
|
||||
startLine: Number(chunk.metadata.loc.lines.from),
|
||||
endLine: Number(chunk.metadata.loc.lines.to),
|
||||
},
|
||||
}
|
||||
})
|
||||
} catch (error) {
|
||||
console.warn(`跳过文件 ${file.path}:`, error.message)
|
||||
skippedFiles.push(file.path)
|
||||
return []
|
||||
}
|
||||
}),
|
||||
)
|
||||
).flat()
|
||||
|
||||
if (skippedFiles.length > 0) {
|
||||
console.warn(`跳过了 ${skippedFiles.length} 个有问题的文件:`, skippedFiles)
|
||||
new Notice(`跳过了 ${skippedFiles.length} 个有问题的文件`)
|
||||
}
|
||||
|
||||
updateProgress?.({
|
||||
completedChunks: 0,
|
||||
totalChunks: contentChunks.length,
|
||||
@ -130,18 +167,22 @@ export class VectorManager {
|
||||
})
|
||||
|
||||
const embeddingProgress = { completed: 0 }
|
||||
const embeddingChunks: InsertVector[] = []
|
||||
const insertBatchSize = 64 // 数据库插入批量大小
|
||||
// 减少批量大小以降低内存压力
|
||||
const insertBatchSize = 16 // 从64降低到16
|
||||
let batchCount = 0
|
||||
|
||||
try {
|
||||
if (embeddingModel.supportsBatch) {
|
||||
// 支持批量处理的提供商:使用批量处理逻辑
|
||||
const embeddingBatchSize = 64 // API批量处理大小
|
||||
// 支持批量处理的提供商:使用流式处理逻辑
|
||||
const embeddingBatchSize = 16 // 从64降低到16
|
||||
|
||||
for (let i = 0; i < contentChunks.length; i += embeddingBatchSize) {
|
||||
batchCount++
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + embeddingBatchSize, contentChunks.length))
|
||||
const batchTexts = batchChunks.map(chunk => chunk.content)
|
||||
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
await backOff(
|
||||
async () => {
|
||||
const batchEmbeddings = await embeddingModel.getBatchEmbeddings(batchTexts)
|
||||
@ -155,80 +196,99 @@ export class VectorManager {
|
||||
embedding: batchEmbeddings[j],
|
||||
metadata: batchChunks[j].metadata,
|
||||
}
|
||||
embeddingChunks.push(embeddedChunk)
|
||||
embeddedBatch.push(embeddedChunk)
|
||||
}
|
||||
|
||||
embeddingProgress.completed += batchChunks.length
|
||||
updateProgress?.({
|
||||
completedChunks: embeddingProgress.completed,
|
||||
totalChunks: contentChunks.length,
|
||||
totalFiles: filesToIndex.length,
|
||||
})
|
||||
},
|
||||
{
|
||||
numOfAttempts: 5,
|
||||
startingDelay: 1000,
|
||||
numOfAttempts: 3, // 减少重试次数
|
||||
startingDelay: 500, // 减少延迟
|
||||
timeMultiple: 1.5,
|
||||
jitter: 'full',
|
||||
},
|
||||
)
|
||||
|
||||
// 立即插入当前批次,避免内存累积
|
||||
if (embeddedBatch.length > 0) {
|
||||
await this.repository.insertVectors(embeddedBatch, embeddingModel)
|
||||
// 清理批次数据
|
||||
embeddedBatch.length = 0
|
||||
}
|
||||
|
||||
embeddingProgress.completed += batchChunks.length
|
||||
updateProgress?.({
|
||||
completedChunks: embeddingProgress.completed,
|
||||
totalChunks: contentChunks.length,
|
||||
totalFiles: filesToIndex.length,
|
||||
})
|
||||
|
||||
// 定期内存清理
|
||||
await this.memoryCleanup(batchCount)
|
||||
}
|
||||
} else {
|
||||
// 不支持批量处理的提供商:使用原来的逐个处理逻辑
|
||||
const limit = pLimit(50)
|
||||
// 不支持批量处理的提供商:使用流式处理逻辑
|
||||
const limit = pLimit(10) // 从50降低到10,减少并发压力
|
||||
const abortController = new AbortController()
|
||||
const tasks = contentChunks.map((chunk) =>
|
||||
limit(async () => {
|
||||
if (abortController.signal.aborted) {
|
||||
throw new Error('Operation was aborted')
|
||||
}
|
||||
try {
|
||||
await backOff(
|
||||
async () => {
|
||||
const embedding = await embeddingModel.getEmbedding(chunk.content)
|
||||
const embeddedChunk = {
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: chunk.content,
|
||||
embedding,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
embeddingChunks.push(embeddedChunk)
|
||||
embeddingProgress.completed++
|
||||
updateProgress?.({
|
||||
completedChunks: embeddingProgress.completed,
|
||||
totalChunks: contentChunks.length,
|
||||
totalFiles: filesToIndex.length,
|
||||
})
|
||||
},
|
||||
{
|
||||
numOfAttempts: 5,
|
||||
startingDelay: 1000,
|
||||
timeMultiple: 1.5,
|
||||
jitter: 'full',
|
||||
},
|
||||
)
|
||||
} catch (error) {
|
||||
abortController.abort()
|
||||
throw error
|
||||
}
|
||||
}),
|
||||
)
|
||||
|
||||
await Promise.all(tasks)
|
||||
}
|
||||
|
||||
// all embedding generated, batch insert
|
||||
if (embeddingChunks.length > 0) {
|
||||
// batch insert all vectors
|
||||
let inserted = 0
|
||||
while (inserted < embeddingChunks.length) {
|
||||
const chunksToInsert = embeddingChunks.slice(
|
||||
inserted,
|
||||
Math.min(inserted + insertBatchSize, embeddingChunks.length)
|
||||
// 流式处理:分批处理并立即插入
|
||||
for (let i = 0; i < contentChunks.length; i += insertBatchSize) {
|
||||
if (abortController.signal.aborted) {
|
||||
throw new Error('Operation was aborted')
|
||||
}
|
||||
|
||||
batchCount++
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + insertBatchSize, contentChunks.length))
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
const tasks = batchChunks.map((chunk) =>
|
||||
limit(async () => {
|
||||
if (abortController.signal.aborted) {
|
||||
throw new Error('Operation was aborted')
|
||||
}
|
||||
try {
|
||||
await backOff(
|
||||
async () => {
|
||||
const embedding = await embeddingModel.getEmbedding(chunk.content)
|
||||
const embeddedChunk = {
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: chunk.content,
|
||||
embedding,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
embeddedBatch.push(embeddedChunk)
|
||||
},
|
||||
{
|
||||
numOfAttempts: 3, // 减少重试次数
|
||||
startingDelay: 500, // 减少延迟
|
||||
timeMultiple: 1.5,
|
||||
jitter: 'full',
|
||||
},
|
||||
)
|
||||
} catch (error) {
|
||||
abortController.abort()
|
||||
throw error
|
||||
}
|
||||
}),
|
||||
)
|
||||
await this.repository.insertVectors(chunksToInsert, embeddingModel)
|
||||
inserted += chunksToInsert.length
|
||||
|
||||
await Promise.all(tasks)
|
||||
|
||||
// 立即插入当前批次
|
||||
if (embeddedBatch.length > 0) {
|
||||
await this.repository.insertVectors(embeddedBatch, embeddingModel)
|
||||
// 清理批次数据
|
||||
embeddedBatch.length = 0
|
||||
}
|
||||
|
||||
embeddingProgress.completed += batchChunks.length
|
||||
updateProgress?.({
|
||||
completedChunks: embeddingProgress.completed,
|
||||
totalChunks: contentChunks.length,
|
||||
totalFiles: filesToIndex.length,
|
||||
})
|
||||
|
||||
// 定期内存清理
|
||||
await this.memoryCleanup(batchCount)
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
@ -244,6 +304,9 @@ export class VectorManager {
|
||||
console.error('Error embedding chunks:', error)
|
||||
throw error
|
||||
}
|
||||
} finally {
|
||||
// 最终清理
|
||||
this.forceGarbageCollection()
|
||||
}
|
||||
}
|
||||
|
||||
@ -252,125 +315,160 @@ export class VectorManager {
|
||||
chunkSize: number,
|
||||
file: TFile
|
||||
) {
|
||||
|
||||
// Delete existing vectors for the files
|
||||
await this.repository.deleteVectorsForSingleFile(
|
||||
file.path,
|
||||
embeddingModel,
|
||||
)
|
||||
|
||||
// Embed the files
|
||||
const textSplitter = RecursiveCharacterTextSplitter.fromLanguage(
|
||||
'markdown',
|
||||
{
|
||||
chunkSize,
|
||||
},
|
||||
)
|
||||
const fileContent = await this.app.vault.cachedRead(file)
|
||||
const fileDocuments = await textSplitter.createDocuments([
|
||||
fileContent,
|
||||
])
|
||||
|
||||
const contentChunks: InsertVector[] = fileDocuments.map((chunk): InsertVector => {
|
||||
return {
|
||||
path: file.path,
|
||||
mtime: file.stat.mtime,
|
||||
content: chunk.pageContent,
|
||||
embedding: [],
|
||||
metadata: {
|
||||
startLine: Number(chunk.metadata.loc.lines.from),
|
||||
endLine: Number(chunk.metadata.loc.lines.to),
|
||||
},
|
||||
}
|
||||
})
|
||||
|
||||
const embeddingChunks: InsertVector[] = []
|
||||
const insertBatchSize = 64 // 数据库插入批量大小
|
||||
|
||||
try {
|
||||
if (embeddingModel.supportsBatch) {
|
||||
// 支持批量处理的提供商:使用批量处理逻辑
|
||||
const embeddingBatchSize = 64 // API批量处理大小
|
||||
|
||||
for (let i = 0; i < contentChunks.length; i += embeddingBatchSize) {
|
||||
console.log(`Embedding batch ${i / embeddingBatchSize + 1} of ${Math.ceil(contentChunks.length / embeddingBatchSize)}`)
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + embeddingBatchSize, contentChunks.length))
|
||||
const batchTexts = batchChunks.map(chunk => chunk.content)
|
||||
|
||||
await backOff(
|
||||
async () => {
|
||||
const batchEmbeddings = await embeddingModel.getBatchEmbeddings(batchTexts)
|
||||
|
||||
// 合并embedding结果到chunk数据
|
||||
for (let j = 0; j < batchChunks.length; j++) {
|
||||
const embeddedChunk: InsertVector = {
|
||||
path: batchChunks[j].path,
|
||||
mtime: batchChunks[j].mtime,
|
||||
content: batchChunks[j].content,
|
||||
embedding: batchEmbeddings[j],
|
||||
metadata: batchChunks[j].metadata,
|
||||
}
|
||||
embeddingChunks.push(embeddedChunk)
|
||||
}
|
||||
},
|
||||
{
|
||||
numOfAttempts: 5,
|
||||
startingDelay: 1000,
|
||||
timeMultiple: 1.5,
|
||||
jitter: 'full',
|
||||
},
|
||||
)
|
||||
// Delete existing vectors for the files
|
||||
await this.repository.deleteVectorsForSingleFile(
|
||||
file.path,
|
||||
embeddingModel,
|
||||
)
|
||||
|
||||
// Embed the files
|
||||
const textSplitter = RecursiveCharacterTextSplitter.fromLanguage(
|
||||
'markdown',
|
||||
{
|
||||
chunkSize,
|
||||
},
|
||||
)
|
||||
let fileContent = await this.app.vault.cachedRead(file)
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
fileContent = fileContent.replace(/\0/g, '')
|
||||
const fileDocuments = await textSplitter.createDocuments([
|
||||
fileContent,
|
||||
])
|
||||
|
||||
const contentChunks: InsertVector[] = fileDocuments.map((chunk): InsertVector => {
|
||||
return {
|
||||
path: file.path,
|
||||
mtime: file.stat.mtime,
|
||||
content: chunk.pageContent.replace(/\0/g, ''), // 再次清理,确保安全
|
||||
embedding: [],
|
||||
metadata: {
|
||||
startLine: Number(chunk.metadata.loc.lines.from),
|
||||
endLine: Number(chunk.metadata.loc.lines.to),
|
||||
},
|
||||
}
|
||||
} else {
|
||||
// 不支持批量处理的提供商:使用原来的逐个处理逻辑
|
||||
const limit = pLimit(50)
|
||||
const abortController = new AbortController()
|
||||
const tasks = contentChunks.map((chunk) =>
|
||||
limit(async () => {
|
||||
})
|
||||
|
||||
// 减少批量大小以降低内存压力
|
||||
const insertBatchSize = 16 // 从64降低到16
|
||||
let batchCount = 0
|
||||
|
||||
try {
|
||||
if (embeddingModel.supportsBatch) {
|
||||
// 支持批量处理的提供商:使用流式处理逻辑
|
||||
const embeddingBatchSize = 16 // 从64降低到16
|
||||
|
||||
for (let i = 0; i < contentChunks.length; i += embeddingBatchSize) {
|
||||
batchCount++
|
||||
console.log(`Embedding batch ${batchCount} of ${Math.ceil(contentChunks.length / embeddingBatchSize)}`)
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + embeddingBatchSize, contentChunks.length))
|
||||
const batchTexts = batchChunks.map(chunk => chunk.content)
|
||||
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
await backOff(
|
||||
async () => {
|
||||
const batchEmbeddings = await embeddingModel.getBatchEmbeddings(batchTexts)
|
||||
|
||||
// 合并embedding结果到chunk数据
|
||||
for (let j = 0; j < batchChunks.length; j++) {
|
||||
const embeddedChunk: InsertVector = {
|
||||
path: batchChunks[j].path,
|
||||
mtime: batchChunks[j].mtime,
|
||||
content: batchChunks[j].content,
|
||||
embedding: batchEmbeddings[j],
|
||||
metadata: batchChunks[j].metadata,
|
||||
}
|
||||
embeddedBatch.push(embeddedChunk)
|
||||
}
|
||||
},
|
||||
{
|
||||
numOfAttempts: 3, // 减少重试次数
|
||||
startingDelay: 500, // 减少延迟
|
||||
timeMultiple: 1.5,
|
||||
jitter: 'full',
|
||||
},
|
||||
)
|
||||
|
||||
// 立即插入当前批次
|
||||
if (embeddedBatch.length > 0) {
|
||||
await this.repository.insertVectors(embeddedBatch, embeddingModel)
|
||||
// 清理批次数据
|
||||
embeddedBatch.length = 0
|
||||
}
|
||||
|
||||
// 定期内存清理
|
||||
await this.memoryCleanup(batchCount)
|
||||
}
|
||||
} else {
|
||||
// 不支持批量处理的提供商:使用流式处理逻辑
|
||||
const limit = pLimit(10) // 从50降低到10
|
||||
const abortController = new AbortController()
|
||||
|
||||
// 流式处理:分批处理并立即插入
|
||||
for (let i = 0; i < contentChunks.length; i += insertBatchSize) {
|
||||
if (abortController.signal.aborted) {
|
||||
throw new Error('Operation was aborted')
|
||||
}
|
||||
try {
|
||||
await backOff(
|
||||
async () => {
|
||||
const embedding = await embeddingModel.getEmbedding(chunk.content)
|
||||
const embeddedChunk = {
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: chunk.content,
|
||||
embedding,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
embeddingChunks.push(embeddedChunk)
|
||||
},
|
||||
{
|
||||
numOfAttempts: 5,
|
||||
startingDelay: 1000,
|
||||
timeMultiple: 1.5,
|
||||
jitter: 'full',
|
||||
},
|
||||
)
|
||||
} catch (error) {
|
||||
abortController.abort()
|
||||
throw error
|
||||
|
||||
batchCount++
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + insertBatchSize, contentChunks.length))
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
const tasks = batchChunks.map((chunk) =>
|
||||
limit(async () => {
|
||||
if (abortController.signal.aborted) {
|
||||
throw new Error('Operation was aborted')
|
||||
}
|
||||
try {
|
||||
await backOff(
|
||||
async () => {
|
||||
const embedding = await embeddingModel.getEmbedding(chunk.content)
|
||||
const embeddedChunk = {
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: chunk.content,
|
||||
embedding,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
embeddedBatch.push(embeddedChunk)
|
||||
},
|
||||
{
|
||||
numOfAttempts: 3, // 减少重试次数
|
||||
startingDelay: 500, // 减少延迟
|
||||
timeMultiple: 1.5,
|
||||
jitter: 'full',
|
||||
},
|
||||
)
|
||||
} catch (error) {
|
||||
abortController.abort()
|
||||
throw error
|
||||
}
|
||||
}),
|
||||
)
|
||||
|
||||
await Promise.all(tasks)
|
||||
|
||||
// 立即插入当前批次
|
||||
if (embeddedBatch.length > 0) {
|
||||
await this.repository.insertVectors(embeddedBatch, embeddingModel)
|
||||
// 清理批次数据
|
||||
embeddedBatch.length = 0
|
||||
}
|
||||
}),
|
||||
)
|
||||
|
||||
await Promise.all(tasks)
|
||||
}
|
||||
|
||||
// all embedding generated, batch insert
|
||||
if (embeddingChunks.length > 0) {
|
||||
let inserted = 0
|
||||
while (inserted < embeddingChunks.length) {
|
||||
const chunksToInsert = embeddingChunks.slice(inserted, Math.min(inserted + insertBatchSize, embeddingChunks.length))
|
||||
await this.repository.insertVectors(chunksToInsert, embeddingModel)
|
||||
inserted += chunksToInsert.length
|
||||
// 定期内存清理
|
||||
await this.memoryCleanup(batchCount)
|
||||
}
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error embedding chunks:', error)
|
||||
} finally {
|
||||
// 最终清理
|
||||
this.forceGarbageCollection()
|
||||
}
|
||||
} catch (error) {
|
||||
console.error('Error embedding chunks:', error)
|
||||
console.warn(`跳过文件 ${file.path}:`, error.message)
|
||||
new Notice(`跳过文件 ${file.name}: ${error.message}`)
|
||||
}
|
||||
}
|
||||
|
||||
@ -424,25 +522,32 @@ export class VectorManager {
|
||||
// Check for updated or new files
|
||||
filesToIndex = await Promise.all(
|
||||
filesToIndex.map(async (file) => {
|
||||
const fileChunks = await this.repository.getVectorsByFilePath(
|
||||
file.path,
|
||||
embeddingModel,
|
||||
)
|
||||
if (fileChunks.length === 0) {
|
||||
// File is not indexed, so we need to index it
|
||||
const fileContent = await this.app.vault.cachedRead(file)
|
||||
if (fileContent.length === 0) {
|
||||
// Ignore empty files
|
||||
return null
|
||||
try {
|
||||
const fileChunks = await this.repository.getVectorsByFilePath(
|
||||
file.path,
|
||||
embeddingModel,
|
||||
)
|
||||
if (fileChunks.length === 0) {
|
||||
// File is not indexed, so we need to index it
|
||||
let fileContent = await this.app.vault.cachedRead(file)
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
fileContent = fileContent.replace(/\0/g, '')
|
||||
if (fileContent.length === 0) {
|
||||
// Ignore empty files
|
||||
return null
|
||||
}
|
||||
return file
|
||||
}
|
||||
return file
|
||||
const outOfDate = file.stat.mtime > fileChunks[0].mtime
|
||||
if (outOfDate) {
|
||||
// File has changed, so we need to re-index it
|
||||
return file
|
||||
}
|
||||
return null
|
||||
} catch (error) {
|
||||
console.warn(`跳过文件 ${file.path}:`, error.message)
|
||||
return null
|
||||
}
|
||||
const outOfDate = file.stat.mtime > fileChunks[0].mtime
|
||||
if (outOfDate) {
|
||||
// File has changed, so we need to re-index it
|
||||
return file
|
||||
}
|
||||
return null
|
||||
}),
|
||||
).then((files) => files.filter(Boolean))
|
||||
|
||||
|
||||
@ -102,7 +102,7 @@ export class VectorRepository {
|
||||
const params = data.flatMap(vector => [
|
||||
vector.path,
|
||||
vector.mtime,
|
||||
vector.content,
|
||||
vector.content.replace(/\0/g, ''), // 清理null字节
|
||||
`[${vector.embedding.join(',')}]`, // 转换为PostgreSQL vector格式
|
||||
vector.metadata
|
||||
])
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user