# Discreet Fourier transform $$ \begin{bmatrix} \hat{f_1} \\ \hat{f_2} \\ \hat{f_3} \\ ... \\ \hat{f_n} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & ... & 1\\ 1 & w_n & w_n^2 & ... & w_n^{n-1}\\ 1 & w^2_n & w_n^4 & ... & w_n^{2(n-1)}\\ ... & ... & ... & ... & ...\\ 1 & w_n^{n-1} & w_n^{2(n-1)} & ... & w_n^{(n-1)^2} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ ... \\ f_n \end{bmatrix} $$ $$ w_n = e^{-2j \pi / n} $$