update save trans to database

This commit is contained in:
duanfuxiang 2025-06-30 11:26:24 +08:00
parent f3a0252ab6
commit 4f5b3f5d04
14 changed files with 869 additions and 607 deletions

View File

@ -15,6 +15,7 @@ import { LLMProvider } from './contexts/LLMContext'
import { McpHubProvider } from './contexts/McpHubContext'
import { RAGProvider } from './contexts/RAGContext'
import { SettingsProvider } from './contexts/SettingsContext'
import { TransProvider } from './contexts/TransContext'
import InfioPlugin from './main'
import { MentionableBlockData } from './types/mentionable'
import { InfioSettings } from './types/settings'
@ -96,7 +97,8 @@ export class ChatView extends ItemView {
>
<DiffStrategyProvider diffStrategy={this.plugin.diffStrategy}>
<RAGProvider getRAGEngine={() => this.plugin.getRAGEngine()}>
<DataviewProvider dataviewManager={this.plugin.dataviewManager}>
<TransProvider getTransEngine={() => this.plugin.getTransEngine()}>
<DataviewProvider dataviewManager={this.plugin.dataviewManager}>
<McpHubProvider getMcpHub={() => this.plugin.getMcpHub()}>
<QueryClientProvider client={queryClient}>
<React.StrictMode>
@ -109,6 +111,7 @@ export class ChatView extends ItemView {
</QueryClientProvider>
</McpHubProvider>
</DataviewProvider>
</TransProvider>
</RAGProvider>
</DiffStrategyProvider>
</DatabaseProvider>

View File

@ -24,6 +24,7 @@ import { useLLM } from '../../contexts/LLMContext'
import { useMcpHub } from '../../contexts/McpHubContext'
import { useRAG } from '../../contexts/RAGContext'
import { useSettings } from '../../contexts/SettingsContext'
import { useTrans } from '../../contexts/TransContext'
import { matchSearchUsingCorePlugin } from '../../core/file-search/match/coreplugin-match'
import { matchSearchUsingOmnisearch } from '../../core/file-search/match/omnisearch-match'
import { regexSearchUsingCorePlugin } from '../../core/file-search/regex/coreplugin-regex'
@ -34,7 +35,7 @@ import {
LLMBaseUrlNotSetException,
LLMModelNotSetException,
} from '../../core/llm/exception'
import { TransformationType, runTransformation } from '../../core/transformations/run_trans'
import { TransformationType } from '../../core/transformations/trans-engine'
import { useChatHistory } from '../../hooks/use-chat-history'
import { useCustomModes } from '../../hooks/use-custom-mode'
import { t } from '../../lang/helpers'
@ -118,6 +119,7 @@ const Chat = forwardRef<ChatRef, ChatProps>((props, ref) => {
const app = useApp()
const { settings, setSettings } = useSettings()
const { getRAGEngine } = useRAG()
const { getTransEngine } = useTrans()
const diffStrategy = useDiffStrategy()
const dataviewManager = useDataview()
const { getMcpHub } = useMcpHub()
@ -832,30 +834,24 @@ const Chat = forwardRef<ChatRef, ChatProps>((props, ref) => {
} else if (toolArgs.type === 'call_transformations') {
// Handling for the unified transformations tool
try {
const targetFile = app.vault.getFileByPath(toolArgs.path);
if (!targetFile) {
throw new Error(`File not found: ${toolArgs.path}`);
}
const fileContent = await readTFileContentPdf(targetFile, app.vault, app);
// The transformation type is now passed directly in the arguments
const transformationType = toolArgs.transformation as TransformationType;
console.log("call_transformations", toolArgs)
// Validate that the transformation type is a valid enum member
if (!Object.values(TransformationType).includes(transformationType)) {
throw new Error(`Unsupported transformation type: ${transformationType}`);
if (!Object.values(TransformationType).includes(toolArgs.transformation as TransformationType)) {
throw new Error(`Unsupported transformation type: ${toolArgs.transformation}`);
}
// Execute the transformation
const transformationResult = await runTransformation({
content: fileContent,
transformationType,
settings,
const transformationType = toolArgs.transformation as TransformationType;
const transEngine = await getTransEngine();
// Execute the transformation using the TransEngine
const transformationResult = await transEngine.runTransformation({
filePath: toolArgs.path,
transformationType: transformationType,
model: {
provider: settings.applyModelProvider,
modelId: settings.applyModelId,
}
},
saveToDatabase: true
});
if (!transformationResult.success) {
@ -863,7 +859,7 @@ const Chat = forwardRef<ChatRef, ChatProps>((props, ref) => {
}
// Build the result message
let formattedContent = `[${transformationType}] transformation complete:\n\n${transformationResult.result}`;
let formattedContent = `[${toolArgs.transformation}] transformation complete:\n\n${transformationResult.result}`;
if (transformationResult.truncated) {
formattedContent += `\n\n*Note: The original content was too long (${transformationResult.originalTokens} tokens) and was truncated to ${transformationResult.processedTokens} tokens for processing.*`;

View File

@ -0,0 +1,39 @@
import {
PropsWithChildren,
createContext,
useContext,
useEffect,
useMemo,
} from 'react'
import { TransEngine } from '../core/transformations/trans-engine'
export type TransContextType = {
getTransEngine: () => Promise<TransEngine>
}
const TransContext = createContext<TransContextType | null>(null)
export function TransProvider({
getTransEngine,
children,
}: PropsWithChildren<{ getTransEngine: () => Promise<TransEngine> }>) {
useEffect(() => {
// start initialization of transEngine in the background
void getTransEngine()
}, [getTransEngine])
const value = useMemo(() => {
return { getTransEngine }
}, [getTransEngine])
return <TransContext.Provider value={value}>{children}</TransContext.Provider>
}
export function useTrans() {
const context = useContext(TransContext)
if (!context) {
throw new Error('useTrans must be used within a TransProvider')
}
return context
}

View File

@ -2,7 +2,7 @@ import { ToolArgs } from "./types"
export function getCallInsightsDescription(args: ToolArgs): string {
return `## insights
Description: Use for **Information Processing**. After reading a note's content, use this tool to process and distill the information in various ways. You must choose the most appropriate transformation type based on your goal.
Description: Use for **Knowledge Synthesis and Retrieval**. This is your primary tool for "asking questions" to a document or a set of documents. Use it to query your notes and extract higher-level insights, summaries, and other conceptual abstractions. Instead of just finding raw text, this tool helps you understand and synthesize the information within your vault.
Parameters:
- path: (required) The path to the file or folder to be processed (relative to the current working directory: ${args.cwd}).
- transformation: (required) The type of transformation to apply. Must be one of the following:
@ -15,12 +15,12 @@ Parameters:
Usage:
<insights>
<path>path/to/your/file.md</path>
<type>simple_summary</type>
<transformation>simple_summary</transformation>
</insights>
Example: Getting the key insights from a project note
<insights>
<path>Projects/Project_Alpha_Retrospective.md</path>
<type>key_insights</type>
<transformation>key_insights</transformation>
</insights>`
}

View File

@ -54,9 +54,9 @@ export function getToolDescriptionsForMode(
customModes?: ModeConfig[],
experiments?: Record<string, boolean>,
): string {
console.log("getToolDescriptionsForMode", mode, customModes)
// console.log("getToolDescriptionsForMode", mode, customModes)
const config = getModeConfig(mode, customModes)
console.log("config", config)
// console.log("config", config)
const args: ToolArgs = {
cwd,
searchSettings,
@ -73,7 +73,7 @@ export function getToolDescriptionsForMode(
config.groups.forEach((groupEntry) => {
const groupName = getGroupName(groupEntry)
const toolGroup = TOOL_GROUPS[groupName]
console.log("toolGroup", toolGroup)
// console.log("toolGroup", toolGroup)
if (toolGroup) {
toolGroup.tools.forEach((tool) => {
if (isToolAllowedForMode(tool, mode, customModes ?? [], experiments ?? {})) {
@ -85,11 +85,11 @@ export function getToolDescriptionsForMode(
// Add always available tools
ALWAYS_AVAILABLE_TOOLS.forEach((tool) => tools.add(tool))
console.log("tools", tools)
// console.log("tools", tools)
// Map tool descriptions for allowed tools
const descriptions = Array.from(tools).map((toolName) => {
const descriptionFn = toolDescriptionMap[toolName]
console.log("descriptionFn", descriptionFn)
// console.log("descriptionFn", descriptionFn)
if (!descriptionFn) {
return undefined
}

View File

@ -1,389 +0,0 @@
import { Result, err, ok } from "neverthrow";
import { LLMModel } from '../../types/llm/model';
import { RequestMessage } from '../../types/llm/request';
import { InfioSettings } from '../../types/settings';
import { tokenCount } from '../../utils/token';
import LLMManager from '../llm/manager';
import { ANALYZE_PAPER_DESCRIPTION, ANALYZE_PAPER_PROMPT } from '../prompts/transformations/analyze-paper';
import { DENSE_SUMMARY_DESCRIPTION, DENSE_SUMMARY_PROMPT } from '../prompts/transformations/dense-summary';
import { KEY_INSIGHTS_DESCRIPTION, KEY_INSIGHTS_PROMPT } from '../prompts/transformations/key-insights';
import { REFLECTIONS_DESCRIPTION, REFLECTIONS_PROMPT } from '../prompts/transformations/reflections';
import { SIMPLE_SUMMARY_DESCRIPTION, SIMPLE_SUMMARY_PROMPT } from '../prompts/transformations/simple-summary';
import { TABLE_OF_CONTENTS_DESCRIPTION, TABLE_OF_CONTENTS_PROMPT } from '../prompts/transformations/table-of-contents';
// 转换类型枚举
export enum TransformationType {
DENSE_SUMMARY = 'dense-summary',
ANALYZE_PAPER = 'analyze-paper',
SIMPLE_SUMMARY = 'simple-summary',
KEY_INSIGHTS = 'key-insights',
TABLE_OF_CONTENTS = 'table-of-contents',
REFLECTIONS = 'reflections'
}
// 转换配置接口
export interface TransformationConfig {
type: TransformationType;
prompt: string;
description: string;
maxTokens?: number;
}
// 所有可用的转换配置
export const TRANSFORMATIONS: Record<TransformationType, TransformationConfig> = {
[TransformationType.DENSE_SUMMARY]: {
type: TransformationType.DENSE_SUMMARY,
prompt: DENSE_SUMMARY_PROMPT,
description: DENSE_SUMMARY_DESCRIPTION,
maxTokens: 4000
},
[TransformationType.ANALYZE_PAPER]: {
type: TransformationType.ANALYZE_PAPER,
prompt: ANALYZE_PAPER_PROMPT,
description: ANALYZE_PAPER_DESCRIPTION,
maxTokens: 3000
},
[TransformationType.SIMPLE_SUMMARY]: {
type: TransformationType.SIMPLE_SUMMARY,
prompt: SIMPLE_SUMMARY_PROMPT,
description: SIMPLE_SUMMARY_DESCRIPTION,
maxTokens: 2000
},
[TransformationType.KEY_INSIGHTS]: {
type: TransformationType.KEY_INSIGHTS,
prompt: KEY_INSIGHTS_PROMPT,
description: KEY_INSIGHTS_DESCRIPTION,
maxTokens: 3000
},
[TransformationType.TABLE_OF_CONTENTS]: {
type: TransformationType.TABLE_OF_CONTENTS,
prompt: TABLE_OF_CONTENTS_PROMPT,
description: TABLE_OF_CONTENTS_DESCRIPTION,
maxTokens: 2000
},
[TransformationType.REFLECTIONS]: {
type: TransformationType.REFLECTIONS,
prompt: REFLECTIONS_PROMPT,
description: REFLECTIONS_DESCRIPTION,
maxTokens: 2500
}
};
// 转换参数接口
export interface TransformationParams {
content: string;
transformationType: TransformationType;
settings: InfioSettings;
model?: LLMModel;
maxContentTokens?: number;
}
// 转换结果接口
export interface TransformationResult {
success: boolean;
result?: string;
error?: string;
truncated?: boolean;
originalTokens?: number;
processedTokens?: number;
}
/**
* LLM
*/
class TransformationLLMClient {
private llm: LLMManager;
private model: LLMModel;
constructor(llm: LLMManager, model: LLMModel) {
this.llm = llm;
this.model = model;
}
async queryChatModel(messages: RequestMessage[]): Promise<Result<string, Error>> {
try {
const stream = await this.llm.streamResponse(
this.model,
{
messages: messages,
model: this.model.modelId,
stream: true,
}
);
let response_content = "";
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content ?? '';
response_content += content;
}
return ok(response_content);
} catch (error) {
return err(error instanceof Error ? error : new Error(String(error)));
}
}
}
/**
*
*/
class DocumentProcessor {
private static readonly DEFAULT_MAX_TOKENS = 12000; // 默认最大 token 数
private static readonly MIN_CONTENT_LENGTH = 100; // 最小内容长度(字符数)
/**
*
*/
static async processContent(content: string, maxTokens: number = this.DEFAULT_MAX_TOKENS): Promise<{
processedContent: string;
truncated: boolean;
originalTokens: number;
processedTokens: number;
}> {
const originalTokens = await tokenCount(content);
if (originalTokens <= maxTokens) {
return {
processedContent: content,
truncated: false,
originalTokens,
processedTokens: originalTokens
};
}
// 智能截断:基于 token 数量和内容边界
// 先按字符比例粗略估算截断位置
const estimatedCharRatio = content.length / originalTokens;
const estimatedCharLimit = Math.floor(maxTokens * estimatedCharRatio * 0.9); // 留一些缓冲
let truncatedContent = content.substring(0, estimatedCharLimit);
// 查找最后一个完整句子的结束位置
const lastSentenceEnd = Math.max(
truncatedContent.lastIndexOf('.'),
truncatedContent.lastIndexOf('!'),
truncatedContent.lastIndexOf('?'),
truncatedContent.lastIndexOf('。'),
truncatedContent.lastIndexOf(''),
truncatedContent.lastIndexOf('')
);
// 查找最后一个段落的结束位置
const lastParagraphEnd = truncatedContent.lastIndexOf('\n\n');
// 选择最合适的截断位置
const cutoffPosition = Math.max(lastSentenceEnd, lastParagraphEnd);
if (cutoffPosition > estimatedCharLimit * 0.8) { // 如果截断位置不会丢失太多内容
truncatedContent = content.substring(0, cutoffPosition + 1);
}
// 确保截断后的内容不会太短
if (truncatedContent.length < this.MIN_CONTENT_LENGTH) {
// 按字符比例回退到安全长度
const safeCharLimit = Math.max(this.MIN_CONTENT_LENGTH, Math.floor(maxTokens * estimatedCharRatio * 0.8));
truncatedContent = content.substring(0, Math.min(safeCharLimit, content.length));
}
// 验证最终的 token 数量
const finalTokens = await tokenCount(truncatedContent);
// 如果仍然超过限制,进行更精确的截断
if (finalTokens > maxTokens) {
const adjustedRatio = truncatedContent.length / finalTokens;
const adjustedCharLimit = Math.floor(maxTokens * adjustedRatio);
truncatedContent = content.substring(0, adjustedCharLimit);
}
const processedTokens = await tokenCount(truncatedContent);
return {
processedContent: truncatedContent,
truncated: true,
originalTokens,
processedTokens
};
}
/**
*
*/
static validateContent(content: string): Result<void, Error> {
if (!content || content.trim().length === 0) {
return err(new Error('内容不能为空'));
}
if (content.length < this.MIN_CONTENT_LENGTH) {
return err(new Error(`内容长度至少需要 ${this.MIN_CONTENT_LENGTH} 个字符`));
}
return ok(undefined);
}
}
/**
*
*/
export async function runTransformation(params: TransformationParams): Promise<TransformationResult> {
const { content, transformationType, settings, model, maxContentTokens } = params;
try {
// 验证内容
const contentValidation = DocumentProcessor.validateContent(content);
if (contentValidation.isErr()) {
return {
success: false,
error: contentValidation.error.message
};
}
// 获取转换配置
const transformationConfig = TRANSFORMATIONS[transformationType];
if (!transformationConfig) {
return {
success: false,
error: `不支持的转换类型: ${transformationType}`
};
}
// 处理文档内容(检查 token 数量并截断)
const tokenLimit = maxContentTokens || DocumentProcessor['DEFAULT_MAX_TOKENS'];
const processedDocument = await DocumentProcessor.processContent(content, tokenLimit);
// 使用默认模型或传入的模型
const llmModel: LLMModel = model || {
provider: settings.applyModelProvider,
modelId: settings.applyModelId,
};
// 创建 LLM 管理器和客户端
const llmManager = new LLMManager(settings);
const client = new TransformationLLMClient(llmManager, llmModel);
// 构建请求消息
const messages: RequestMessage[] = [
{
role: 'system',
content: transformationConfig.prompt
},
{
role: 'user',
content: processedDocument.processedContent
}
];
// 调用 LLM 执行转换
const result = await client.queryChatModel(messages);
if (result.isErr()) {
return {
success: false,
error: `LLM 调用失败: ${result.error.message}`,
truncated: processedDocument.truncated,
originalTokens: processedDocument.originalTokens,
processedTokens: processedDocument.processedTokens
};
}
// 后处理结果
const processedResult = postProcessResult(result.value, transformationType);
return {
success: true,
result: processedResult,
truncated: processedDocument.truncated,
originalTokens: processedDocument.originalTokens,
processedTokens: processedDocument.processedTokens
};
} catch (error) {
return {
success: false,
error: `转换过程中出现错误: ${error instanceof Error ? error.message : String(error)}`
};
}
}
/**
*
*/
function postProcessResult(result: string, transformationType: TransformationType): string {
let processed = result.trim();
// 移除可能的 markdown 代码块标记
processed = processed.replace(/^```[\w]*\n/, '').replace(/\n```$/, '');
// 根据转换类型进行特定的后处理
switch (transformationType) {
case TransformationType.KEY_INSIGHTS:
// 确保 insights 格式正确
if (!processed.includes('INSIGHTS')) {
processed = `# INSIGHTS\n\n${processed}`;
}
break;
case TransformationType.REFLECTIONS:
// 确保 reflections 格式正确
if (!processed.includes('REFLECTIONS')) {
processed = `# REFLECTIONS\n\n${processed}`;
}
break;
case TransformationType.ANALYZE_PAPER: {
// 确保论文分析包含所有必需的部分
const requiredSections = ['PURPOSE', 'CONTRIBUTION', 'KEY FINDINGS', 'IMPLICATIONS', 'LIMITATIONS'];
const hasAllSections = requiredSections.every(section =>
processed.toUpperCase().includes(section)
);
if (!hasAllSections) {
// 如果缺少某些部分,添加提示
processed += '\n\n*注意:某些分析部分可能不完整,建议重新处理或检查原始内容。*';
}
break;
}
}
return processed;
}
/**
*
*/
export async function runBatchTransformations(
content: string,
transformationTypes: TransformationType[],
settings: InfioSettings,
model?: LLMModel
): Promise<Record<string, TransformationResult>> {
const results: Record<string, TransformationResult> = {};
// 并行执行所有转换
const promises = transformationTypes.map(async (type) => {
const result = await runTransformation({
content,
transformationType: type,
settings,
model
});
return { type, result };
});
const completedResults = await Promise.all(promises);
for (const { type, result } of completedResults) {
results[type] = result;
}
return results;
}
/**
*
*/
export function getAvailableTransformations(): Array<{ type: TransformationType, description: string }> {
return Object.values(TRANSFORMATIONS).map(config => ({
type: config.type,
description: config.description
}));
}

View File

@ -0,0 +1,683 @@
import { Result, err, ok } from "neverthrow";
import { App } from 'obsidian';
import { DBManager } from '../../database/database-manager';
import { InsightManager } from '../../database/modules/insight/insight-manager';
import { EmbeddingModel } from '../../types/embedding';
import { LLMModel } from '../../types/llm/model';
import { RequestMessage } from '../../types/llm/request';
import { InfioSettings } from '../../types/settings';
import { readTFileContentPdf } from '../../utils/obsidian';
import { tokenCount } from '../../utils/token';
import LLMManager from '../llm/manager';
import { ANALYZE_PAPER_DESCRIPTION, ANALYZE_PAPER_PROMPT } from '../prompts/transformations/analyze-paper';
import { DENSE_SUMMARY_DESCRIPTION, DENSE_SUMMARY_PROMPT } from '../prompts/transformations/dense-summary';
import { KEY_INSIGHTS_DESCRIPTION, KEY_INSIGHTS_PROMPT } from '../prompts/transformations/key-insights';
import { REFLECTIONS_DESCRIPTION, REFLECTIONS_PROMPT } from '../prompts/transformations/reflections';
import { SIMPLE_SUMMARY_DESCRIPTION, SIMPLE_SUMMARY_PROMPT } from '../prompts/transformations/simple-summary';
import { TABLE_OF_CONTENTS_DESCRIPTION, TABLE_OF_CONTENTS_PROMPT } from '../prompts/transformations/table-of-contents';
import { getEmbeddingModel } from '../rag/embedding';
// 转换类型枚举
export enum TransformationType {
DENSE_SUMMARY = 'dense_summary',
ANALYZE_PAPER = 'analyze_paper',
SIMPLE_SUMMARY = 'simple_summary',
KEY_INSIGHTS = 'key_insights',
TABLE_OF_CONTENTS = 'table_of_contents',
REFLECTIONS = 'reflections'
}
// 转换配置接口
export interface TransformationConfig {
type: TransformationType;
prompt: string;
description: string;
maxTokens?: number;
}
// 所有可用的转换配置
export const TRANSFORMATIONS: Record<TransformationType, TransformationConfig> = {
[TransformationType.DENSE_SUMMARY]: {
type: TransformationType.DENSE_SUMMARY,
prompt: DENSE_SUMMARY_PROMPT,
description: DENSE_SUMMARY_DESCRIPTION,
maxTokens: 4000
},
[TransformationType.ANALYZE_PAPER]: {
type: TransformationType.ANALYZE_PAPER,
prompt: ANALYZE_PAPER_PROMPT,
description: ANALYZE_PAPER_DESCRIPTION,
maxTokens: 3000
},
[TransformationType.SIMPLE_SUMMARY]: {
type: TransformationType.SIMPLE_SUMMARY,
prompt: SIMPLE_SUMMARY_PROMPT,
description: SIMPLE_SUMMARY_DESCRIPTION,
maxTokens: 2000
},
[TransformationType.KEY_INSIGHTS]: {
type: TransformationType.KEY_INSIGHTS,
prompt: KEY_INSIGHTS_PROMPT,
description: KEY_INSIGHTS_DESCRIPTION,
maxTokens: 3000
},
[TransformationType.TABLE_OF_CONTENTS]: {
type: TransformationType.TABLE_OF_CONTENTS,
prompt: TABLE_OF_CONTENTS_PROMPT,
description: TABLE_OF_CONTENTS_DESCRIPTION,
maxTokens: 2000
},
[TransformationType.REFLECTIONS]: {
type: TransformationType.REFLECTIONS,
prompt: REFLECTIONS_PROMPT,
description: REFLECTIONS_DESCRIPTION,
maxTokens: 2500
}
};
// 转换参数接口
export interface TransformationParams {
filePath: string; // 必须的文件路径
contentType?: 'document' | 'tag' | 'folder';
transformationType: TransformationType;
model?: LLMModel;
maxContentTokens?: number;
saveToDatabase?: boolean;
}
// 转换结果接口
export interface TransformationResult {
success: boolean;
result?: string;
error?: string;
truncated?: boolean;
originalTokens?: number;
processedTokens?: number;
}
/**
* LLM
*/
class TransformationLLMClient {
private llm: LLMManager;
private model: LLMModel;
constructor(llm: LLMManager, model: LLMModel) {
this.llm = llm;
this.model = model;
}
async queryChatModel(messages: RequestMessage[]): Promise<Result<string, Error>> {
try {
const stream = await this.llm.streamResponse(
this.model,
{
messages: messages,
model: this.model.modelId,
stream: true,
}
);
let response_content = "";
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content ?? '';
response_content += content;
}
return ok(response_content);
} catch (error) {
return err(error instanceof Error ? error : new Error(String(error)));
}
}
}
/**
*
*/
class DocumentProcessor {
private static readonly DEFAULT_MAX_TOKENS = 12000; // 默认最大 token 数
private static readonly MIN_CONTENT_LENGTH = 100; // 最小内容长度(字符数)
/**
*
*/
static async processContent(content: string, maxTokens: number = this.DEFAULT_MAX_TOKENS): Promise<{
processedContent: string;
truncated: boolean;
originalTokens: number;
processedTokens: number;
}> {
const originalTokens = await tokenCount(content);
if (originalTokens <= maxTokens) {
return {
processedContent: content,
truncated: false,
originalTokens,
processedTokens: originalTokens
};
}
// 智能截断:基于 token 数量和内容边界
// 先按字符比例粗略估算截断位置
const estimatedCharRatio = content.length / originalTokens;
const estimatedCharLimit = Math.floor(maxTokens * estimatedCharRatio * 0.9); // 留一些缓冲
let truncatedContent = content.substring(0, estimatedCharLimit);
// 查找最后一个完整句子的结束位置
const lastSentenceEnd = Math.max(
truncatedContent.lastIndexOf('.'),
truncatedContent.lastIndexOf('!'),
truncatedContent.lastIndexOf('?'),
truncatedContent.lastIndexOf('。'),
truncatedContent.lastIndexOf(''),
truncatedContent.lastIndexOf('')
);
// 查找最后一个段落的结束位置
const lastParagraphEnd = truncatedContent.lastIndexOf('\n\n');
// 选择最合适的截断位置
const cutoffPosition = Math.max(lastSentenceEnd, lastParagraphEnd);
if (cutoffPosition > estimatedCharLimit * 0.8) { // 如果截断位置不会丢失太多内容
truncatedContent = content.substring(0, cutoffPosition + 1);
}
// 确保截断后的内容不会太短
if (truncatedContent.length < this.MIN_CONTENT_LENGTH) {
// 按字符比例回退到安全长度
const safeCharLimit = Math.max(this.MIN_CONTENT_LENGTH, Math.floor(maxTokens * estimatedCharRatio * 0.8));
truncatedContent = content.substring(0, Math.min(safeCharLimit, content.length));
}
// 验证最终的 token 数量
const finalTokens = await tokenCount(truncatedContent);
// 如果仍然超过限制,进行更精确的截断
if (finalTokens > maxTokens) {
const adjustedRatio = truncatedContent.length / finalTokens;
const adjustedCharLimit = Math.floor(maxTokens * adjustedRatio);
truncatedContent = content.substring(0, adjustedCharLimit);
}
const processedTokens = await tokenCount(truncatedContent);
return {
processedContent: truncatedContent,
truncated: true,
originalTokens,
processedTokens
};
}
/**
*
*/
static validateContent(content: string): Result<void, Error> {
if (!content || content.trim().length === 0) {
return err(new Error('内容不能为空'));
}
if (content.length < this.MIN_CONTENT_LENGTH) {
return err(new Error(`内容长度至少需要 ${this.MIN_CONTENT_LENGTH} 个字符`));
}
return ok(undefined);
}
}
/**
*
*/
export class TransEngine {
private app: App;
private settings: InfioSettings;
private llmManager: LLMManager;
private insightManager: InsightManager | null = null;
private embeddingModel: EmbeddingModel | null = null;
constructor(
app: App,
settings: InfioSettings,
dbManager: DBManager,
) {
this.app = app;
this.settings = settings;
this.llmManager = new LLMManager(settings);
this.insightManager = dbManager.getInsightManager();
// 初始化 embedding model
if (settings.embeddingModelId && settings.embeddingModelId.trim() !== '') {
try {
this.embeddingModel = getEmbeddingModel(settings);
} catch (error) {
console.warn('Failed to initialize embedding model:', error);
this.embeddingModel = null;
}
} else {
this.embeddingModel = null;
}
}
cleanup() {
this.embeddingModel = null;
this.insightManager = null;
}
setSettings(settings: InfioSettings) {
this.settings = settings;
this.llmManager = new LLMManager(settings);
// 重新初始化 embedding model
if (settings.embeddingModelId && settings.embeddingModelId.trim() !== '') {
try {
this.embeddingModel = getEmbeddingModel(settings);
} catch (error) {
console.warn('Failed to initialize embedding model:', error);
this.embeddingModel = null;
}
} else {
this.embeddingModel = null;
}
}
/**
*
*/
private async getFileMetadata(filePath: string): Promise<
| {
success: true;
fileExists: true;
sourcePath: string;
sourceMtime: number;
}
| {
success: false;
error: string;
}
> {
const targetFile = this.app.vault.getFileByPath(filePath);
if (!targetFile) {
return {
success: false,
error: `文件不存在: ${filePath}`
};
}
return {
success: true,
fileExists: true,
sourcePath: filePath,
sourceMtime: targetFile.stat.mtime
};
}
/**
*
*/
private async checkDatabaseCache(
sourcePath: string,
sourceMtime: number,
transformationType: TransformationType
): Promise<
| {
success: true;
foundCache: true;
result: TransformationResult;
}
| {
success: true;
foundCache: false;
}
> {
// 如果没有必要的参数,跳过缓存检查
if (!this.embeddingModel || !this.insightManager) {
console.log("no embeddingModel or insightManager");
return {
success: true,
foundCache: false
};
}
try {
const existingInsights = await this.insightManager.getInsightsBySourcePath(sourcePath, this.embeddingModel);
console.log("existingInsights", existingInsights);
// 查找匹配的转换类型和修改时间的洞察
const matchingInsight = existingInsights.find(insight =>
insight.insight_type === transformationType &&
insight.source_mtime === sourceMtime
);
if (matchingInsight) {
// 找到匹配的缓存结果,直接返回
console.log(`使用缓存的转换结果: ${transformationType} for ${sourcePath}`);
return {
success: true,
foundCache: true,
result: {
success: true,
result: matchingInsight.insight,
truncated: false, // 缓存的结果不涉及截断
originalTokens: 0, // 缓存结果不需要提供token信息
processedTokens: 0
}
};
}
return {
success: true,
foundCache: false
};
} catch (cacheError) {
console.warn('查询缓存失败,继续执行转换:', cacheError);
// 缓存查询失败不影响主流程
return {
success: true,
foundCache: false
};
}
}
/**
*
*/
private async getFileContent(filePath: string): Promise<
| {
success: true;
fileContent: string;
}
| {
success: false;
error: string;
}
> {
const targetFile = this.app.vault.getFileByPath(filePath);
if (!targetFile) {
return {
success: false,
error: `文件不存在: ${filePath}`
};
}
try {
const fileContent = await readTFileContentPdf(targetFile, this.app.vault, this.app);
return {
success: true,
fileContent
};
} catch (error) {
return {
success: false,
error: `读取文件失败: ${error instanceof Error ? error.message : String(error)}`
};
}
}
/**
*
*/
private async saveResultToDatabase(
result: string,
transformationType: TransformationType,
sourcePath: string,
sourceMtime: number,
contentType: string
): Promise<void> {
if (!this.embeddingModel || !this.insightManager) {
return;
}
try {
// 生成洞察内容的嵌入向量
const insightEmbedding = await this.embeddingModel.getEmbedding(result);
// 保存到数据库
await this.insightManager.storeInsight(
{
insightType: transformationType,
insight: result,
sourceType: contentType,
sourcePath: sourcePath,
sourceMtime: sourceMtime,
embedding: insightEmbedding,
},
this.embeddingModel
);
console.log(`转换结果已成功保存到数据库: ${transformationType} for ${sourcePath}`);
} catch (dbError) {
console.warn('保存洞察到数据库失败:', dbError);
// 后台任务失败不影响主要的转换结果
}
}
/**
*
*/
async runTransformation(params: TransformationParams): Promise<TransformationResult> {
console.log("runTransformation", params);
const {
filePath,
contentType = 'document',
transformationType,
model,
maxContentTokens,
saveToDatabase = false
} = params;
try {
// 第一步:获取文件元信息
const metadataResult = await this.getFileMetadata(filePath);
if (!metadataResult.success) {
return {
success: false,
error: metadataResult.error
};
}
// 此时TypeScript知道metadataResult.success为true
const { sourcePath, sourceMtime } = metadataResult;
// 第二步:检查数据库缓存
const cacheCheckResult = await this.checkDatabaseCache(
sourcePath,
sourceMtime,
transformationType
);
if (cacheCheckResult.foundCache) {
return cacheCheckResult.result;
}
// 第三步:获取文件内容(只有在没有缓存时才执行)
const fileContentResult = await this.getFileContent(filePath);
if (!fileContentResult.success) {
return {
success: false,
error: fileContentResult.error
};
}
// 此时TypeScript知道fileContentResult.success为true
const { fileContent } = fileContentResult;
// 验证内容
const contentValidation = DocumentProcessor.validateContent(fileContent);
if (contentValidation.isErr()) {
return {
success: false,
error: contentValidation.error.message
};
}
// 获取转换配置
const transformationConfig = TRANSFORMATIONS[transformationType];
if (!transformationConfig) {
return {
success: false,
error: `不支持的转换类型: ${transformationType}`
};
}
// 处理文档内容(检查 token 数量并截断)
const tokenLimit = maxContentTokens || DocumentProcessor['DEFAULT_MAX_TOKENS'];
const processedDocument = await DocumentProcessor.processContent(fileContent, tokenLimit);
// 使用默认模型或传入的模型
const llmModel: LLMModel = model || {
provider: this.settings.applyModelProvider,
modelId: this.settings.applyModelId,
};
// 创建 LLM 客户端
const client = new TransformationLLMClient(this.llmManager, llmModel);
// 构建请求消息
const messages: RequestMessage[] = [
{
role: 'system',
content: transformationConfig.prompt
},
{
role: 'user',
content: processedDocument.processedContent
}
];
// 调用 LLM 执行转换
const result = await client.queryChatModel(messages);
if (result.isErr()) {
return {
success: false,
error: `LLM 调用失败: ${result.error.message}`,
truncated: processedDocument.truncated,
originalTokens: processedDocument.originalTokens,
processedTokens: processedDocument.processedTokens
};
}
// 后处理结果
const processedResult = this.postProcessResult(result.value, transformationType);
// 保存转换结果到数据库(后台任务,不阻塞主流程)
if (saveToDatabase) {
// 创建后台任务,不使用 await
(async () => {
await this.saveResultToDatabase(
processedResult,
transformationType,
sourcePath,
sourceMtime,
contentType
);
})(); // 立即执行异步函数,但不等待其完成
}
return {
success: true,
result: processedResult,
truncated: processedDocument.truncated,
originalTokens: processedDocument.originalTokens,
processedTokens: processedDocument.processedTokens
};
} catch (error) {
return {
success: false,
error: `转换过程中出现错误: ${error instanceof Error ? error.message : String(error)}`
};
}
}
/**
*
*/
private postProcessResult(result: string, transformationType: TransformationType): string {
let processed = result.trim();
// 移除可能的 markdown 代码块标记
processed = processed.replace(/^```[\w]*\n/, '').replace(/\n```$/, '');
// 根据转换类型进行特定的后处理
switch (transformationType) {
case TransformationType.KEY_INSIGHTS:
// 确保 insights 格式正确
if (!processed.includes('INSIGHTS')) {
processed = `# INSIGHTS\n\n${processed}`;
}
break;
case TransformationType.REFLECTIONS:
// 确保 reflections 格式正确
if (!processed.includes('REFLECTIONS')) {
processed = `# REFLECTIONS\n\n${processed}`;
}
break;
case TransformationType.ANALYZE_PAPER: {
// 确保论文分析包含所有必需的部分
const requiredSections = ['PURPOSE', 'CONTRIBUTION', 'KEY FINDINGS', 'IMPLICATIONS', 'LIMITATIONS'];
const hasAllSections = requiredSections.every(section =>
processed.toUpperCase().includes(section)
);
if (!hasAllSections) {
// 如果缺少某些部分,添加提示
processed += '\n\n*注意:某些分析部分可能不完整,建议重新处理或检查原始内容。*';
}
break;
}
}
return processed;
}
/**
*
*/
async runBatchTransformations(
filePath: string,
transformationTypes: TransformationType[],
options?: {
model?: LLMModel;
saveToDatabase?: boolean;
}
): Promise<Record<string, TransformationResult>> {
const results: Record<string, TransformationResult> = {};
// 并行执行所有转换
const promises = transformationTypes.map(async (type) => {
const result = await this.runTransformation({
filePath: filePath,
transformationType: type,
model: options?.model,
saveToDatabase: options?.saveToDatabase
});
return { type, result };
});
const completedResults = await Promise.all(promises);
for (const { type, result } of completedResults) {
results[type] = result;
}
return results;
}
/**
*
*/
static getAvailableTransformations(): Array<{ type: TransformationType, description: string }> {
return Object.values(TRANSFORMATIONS).map(config => ({
type: config.type,
description: config.description
}));
}
}

View File

@ -1,181 +0,0 @@
import { InfioSettings } from '../../types/settings';
import {
TransformationType,
getAvailableTransformations,
runBatchTransformations,
runTransformation,
} from './run_trans';
/**
* 使
*/
export async function exampleSingleTransformation(settings: InfioSettings) {
const sampleContent = `
AI技术的普及
AI技术的安全和可控发展
`;
try {
// 执行简单摘要转换
const result = await runTransformation({
content: sampleContent,
transformationType: TransformationType.SIMPLE_SUMMARY,
settings: settings
});
if (result.success) {
console.log('转换成功!');
console.log('结果:', result.result);
if (result.truncated) {
console.log(`注意:内容被截断 (${result.originalLength} -> ${result.processedLength} 字符)`);
}
} else {
console.error('转换失败:', result.error);
}
return result;
} catch (error) {
console.error('执行转换时出错:', error);
throw error;
}
}
/**
* 使
*/
export async function exampleBatchTransformations(settings: InfioSettings) {
const sampleContent = `
`;
try {
// 同时执行多种转换
const transformationTypes = [
TransformationType.SIMPLE_SUMMARY,
TransformationType.KEY_INSIGHTS,
TransformationType.TABLE_OF_CONTENTS
];
const results = await runBatchTransformations(
sampleContent,
transformationTypes,
settings
);
console.log('批量转换完成!');
for (const [type, result] of Object.entries(results)) {
console.log(`\n=== ${type.toUpperCase()} ===`);
if (result.success) {
console.log(result.result);
} else {
console.error('失败:', result.error);
}
}
return results;
} catch (error) {
console.error('执行批量转换时出错:', error);
throw error;
}
}
/**
* 使
*/
export async function exampleLongDocumentProcessing(settings: InfioSettings) {
// 模拟一个很长的文档
const longContent = '这是一个很长的文档内容。'.repeat(10000); // 约50万字符
try {
const result = await runTransformation({
content: longContent,
transformationType: TransformationType.DENSE_SUMMARY,
settings: settings,
maxContentLength: 30000 // 设置最大内容长度
});
if (result.success) {
console.log('长文档转换成功!');
console.log('原始长度:', result.originalLength);
console.log('处理后长度:', result.processedLength);
console.log('是否被截断:', result.truncated);
console.log('结果长度:', result.result?.length);
} else {
console.error('转换失败:', result.error);
}
return result;
} catch (error) {
console.error('处理长文档时出错:', error);
throw error;
}
}
/**
* 使
*/
export function exampleGetAvailableTransformations() {
const availableTransformations = getAvailableTransformations();
console.log('可用的转换类型:');
availableTransformations.forEach((transformation, index) => {
console.log(`${index + 1}. ${transformation.type}: ${transformation.description}`);
});
return availableTransformations;
}
/**
* 使
*/
export async function exampleErrorHandling(settings: InfioSettings) {
try {
// 测试空内容
const emptyResult = await runTransformation({
content: '',
transformationType: TransformationType.SIMPLE_SUMMARY,
settings: settings
});
console.log('空内容测试:', emptyResult);
// 测试太短的内容
const shortResult = await runTransformation({
content: '太短',
transformationType: TransformationType.SIMPLE_SUMMARY,
settings: settings
});
console.log('短内容测试:', shortResult);
// 测试无效的转换类型(需要类型断言来测试)
const invalidResult = await runTransformation({
content: '这是一些测试内容,用于测试无效的转换类型处理。',
transformationType: 'invalid-type' as TransformationType,
settings: settings
});
console.log('无效类型测试:', invalidResult);
} catch (error) {
console.error('错误处理测试时出错:', error);
}
}

View File

@ -1,8 +1,8 @@
import { App, TFile } from 'obsidian'
import { InsertSourceInsight, SelectSourceInsight } from '../../schema'
import { EmbeddingModel } from '../../../types/embedding'
import { DBManager } from '../../database-manager'
import { InsertSourceInsight, SelectSourceInsight } from '../../schema'
import { InsightRepository } from './insight-repository'
@ -51,6 +51,7 @@ export class InsightManager {
insight: string
sourceType: 'document' | 'tag' | 'folder'
sourcePath: string
sourceMtime: number
embedding: number[]
},
embeddingModel: EmbeddingModel,
@ -60,6 +61,7 @@ export class InsightManager {
insight: insightData.insight,
source_type: insightData.sourceType,
source_path: insightData.sourcePath,
source_mtime: insightData.sourceMtime,
embedding: insightData.embedding,
}
@ -75,6 +77,7 @@ export class InsightManager {
insight: string
sourceType: 'document' | 'tag' | 'folder'
sourcePath: string
sourceMtime: number
embedding: number[]
}>,
embeddingModel: EmbeddingModel,
@ -84,6 +87,7 @@ export class InsightManager {
insight: data.insight,
source_type: data.sourceType,
source_path: data.sourcePath,
source_mtime: data.sourceMtime,
embedding: data.embedding,
}))
@ -100,6 +104,7 @@ export class InsightManager {
insight?: string
sourceType?: 'document' | 'tag' | 'folder'
sourcePath?: string
sourceMtime?: number
embedding?: number[]
},
embeddingModel: EmbeddingModel,
@ -118,6 +123,9 @@ export class InsightManager {
if (updates.sourcePath !== undefined) {
updateData.source_path = updates.sourcePath
}
if (updates.sourceMtime !== undefined) {
updateData.source_mtime = updates.sourceMtime
}
if (updates.embedding !== undefined) {
updateData.embedding = updates.embedding
}
@ -318,4 +326,26 @@ export class InsightManager {
return filteredInsights
}
// /**
// * 根据源文件修改时间范围获取洞察
// */
// async getInsightsByMtimeRange(
// minMtime: number,
// maxMtime: number,
// embeddingModel: EmbeddingModel,
// ): Promise<SelectSourceInsight[]> {
// return await this.repository.getInsightsByMtimeRange(minMtime, maxMtime, embeddingModel)
// }
// /**
// * 根据源文件修改时间获取需要更新的洞察
// */
// async getOutdatedInsights(
// sourcePath: string,
// currentMtime: number,
// embeddingModel: EmbeddingModel,
// ): Promise<SelectSourceInsight[]> {
// return await this.repository.getOutdatedInsights(sourcePath, currentMtime, embeddingModel)
// }
}

View File

@ -139,8 +139,8 @@ export class InsightRepository {
// 构建批量插入的 SQL
const values = data.map((insight, index) => {
const offset = index * 6
return `($${offset + 1}, $${offset + 2}, $${offset + 3}, $${offset + 4}, $${offset + 5}, $${offset + 6})`
const offset = index * 7
return `($${offset + 1}, $${offset + 2}, $${offset + 3}, $${offset + 4}, $${offset + 5}, $${offset + 6}, $${offset + 7})`
}).join(',')
const params = data.flatMap(insight => [
@ -148,12 +148,13 @@ export class InsightRepository {
insight.insight.replace(/\0/g, ''), // 清理null字节
insight.source_type,
insight.source_path,
insight.source_mtime,
`[${insight.embedding.join(',')}]`, // 转换为PostgreSQL vector格式
new Date() // updated_at
])
await this.db.query(
`INSERT INTO "${tableName}" (insight_type, insight, source_type, source_path, embedding, updated_at)
`INSERT INTO "${tableName}" (insight_type, insight, source_type, source_path, source_mtime, embedding, updated_at)
VALUES ${values}`,
params
)
@ -197,6 +198,12 @@ export class InsightRepository {
paramIndex++
}
if (data.source_mtime !== undefined) {
fields.push(`source_mtime = $${paramIndex}`)
params.push(data.source_mtime)
paramIndex++
}
if (data.embedding !== undefined) {
fields.push(`embedding = $${paramIndex}`)
params.push(`[${data.embedding.join(',')}]`)
@ -235,7 +242,7 @@ export class InsightRepository {
}
const tableName = this.getTableName(embeddingModel)
let whereConditions = ['1 - (embedding <=> $1::vector) > $2']
const whereConditions: string[] = ['1 - (embedding <=> $1::vector) > $2']
const params: unknown[] = [`[${queryVector.join(',')}]`, options.minSimilarity, options.limit]
let paramIndex = 4
@ -259,7 +266,7 @@ export class InsightRepository {
const query = `
SELECT
id, insight_type, insight, source_type, source_path, created_at, updated_at,
id, insight_type, insight, source_type, source_path, source_mtime, created_at, updated_at,
1 - (embedding <=> $1::vector) as similarity
FROM "${tableName}"
WHERE ${whereConditions.join(' AND ')}
@ -271,4 +278,36 @@ export class InsightRepository {
const result = await this.db.query<SearchResult>(query, params)
return result.rows
}
// async getInsightsByMtimeRange(
// minMtime: number,
// maxMtime: number,
// embeddingModel: EmbeddingModel,
// ): Promise<SelectSourceInsight[]> {
// if (!this.db) {
// throw new DatabaseNotInitializedException()
// }
// const tableName = this.getTableName(embeddingModel)
// const result = await this.db.query<SelectSourceInsight>(
// `SELECT * FROM "${tableName}" WHERE source_mtime >= $1 AND source_mtime <= $2 ORDER BY created_at DESC`,
// [minMtime, maxMtime]
// )
// return result.rows
// }
// async getOutdatedInsights(
// sourcePath: string,
// currentMtime: number,
// embeddingModel: EmbeddingModel,
// ): Promise<SelectSourceInsight[]> {
// if (!this.db) {
// throw new DatabaseNotInitializedException()
// }
// const tableName = this.getTableName(embeddingModel)
// const result = await this.db.query<SelectSourceInsight>(
// `SELECT * FROM "${tableName}" WHERE source_path = $1 AND source_mtime < $2 ORDER BY created_at DESC`,
// [sourcePath, currentMtime]
// )
// return result.rows
// }
}

View File

@ -1,7 +1,6 @@
import { SerializedLexicalNode } from 'lexical'
import { SUPPORT_EMBEDDING_SIMENTION } from '../constants'
import { ApplyStatus } from '../types/apply'
// import { EmbeddingModelId } from '../types/embedding'
// PostgreSQL column types
@ -184,6 +183,7 @@ export type SourceInsightRecord = {
insight: string
source_type: 'document' | 'tag' | 'folder'
source_path: string
source_mtime: number
embedding: number[]
created_at: Date
updated_at: Date
@ -203,6 +203,7 @@ const createSourceInsightTable = (dimension: number): TableDefinition => {
insight: { type: 'TEXT', notNull: true },
source_type: { type: 'TEXT', notNull: true },
source_path: { type: 'TEXT', notNull: true },
source_mtime: { type: 'BIGINT', notNull: true },
embedding: { type: 'VECTOR', dimensions: dimension },
created_at: { type: 'TIMESTAMP', notNull: true, defaultNow: true },
updated_at: { type: 'TIMESTAMP', notNull: true, defaultNow: true }

View File

@ -104,6 +104,7 @@ export const migrations: Record<string, SqlMigration> = {
"insight" text NOT NULL,
"source_type" text NOT NULL,
"source_path" text NOT NULL,
"source_mtime" bigint NOT NULL,
"embedding" vector(1536),
"created_at" timestamp DEFAULT now() NOT NULL,
"updated_at" timestamp DEFAULT now() NOT NULL
@ -115,6 +116,7 @@ export const migrations: Record<string, SqlMigration> = {
"insight" text NOT NULL,
"source_type" text NOT NULL,
"source_path" text NOT NULL,
"source_mtime" bigint NOT NULL,
"embedding" vector(1024),
"created_at" timestamp DEFAULT now() NOT NULL,
"updated_at" timestamp DEFAULT now() NOT NULL
@ -126,6 +128,7 @@ export const migrations: Record<string, SqlMigration> = {
"insight" text NOT NULL,
"source_type" text NOT NULL,
"source_path" text NOT NULL,
"source_mtime" bigint NOT NULL,
"embedding" vector(768),
"created_at" timestamp DEFAULT now() NOT NULL,
"updated_at" timestamp DEFAULT now() NOT NULL
@ -137,6 +140,7 @@ export const migrations: Record<string, SqlMigration> = {
"insight" text NOT NULL,
"source_type" text NOT NULL,
"source_path" text NOT NULL,
"source_mtime" bigint NOT NULL,
"embedding" vector(512),
"created_at" timestamp DEFAULT now() NOT NULL,
"updated_at" timestamp DEFAULT now() NOT NULL
@ -148,6 +152,7 @@ export const migrations: Record<string, SqlMigration> = {
"insight" text NOT NULL,
"source_type" text NOT NULL,
"source_path" text NOT NULL,
"source_mtime" bigint NOT NULL,
"embedding" vector(384),
"created_at" timestamp DEFAULT now() NOT NULL,
"updated_at" timestamp DEFAULT now() NOT NULL
@ -245,5 +250,16 @@ export const migrations: Record<string, SqlMigration> = {
"created_at" timestamp DEFAULT now() NOT NULL
);
`
},
add_source_mtime: {
description: "Adds missing source_mtime column to existing source insight tables",
sql: `
-- Add source_mtime column to existing source insight tables if it doesn't exist
ALTER TABLE "source_insight_1536" ADD COLUMN IF NOT EXISTS "source_mtime" bigint NOT NULL DEFAULT 0;
ALTER TABLE "source_insight_1024" ADD COLUMN IF NOT EXISTS "source_mtime" bigint NOT NULL DEFAULT 0;
ALTER TABLE "source_insight_768" ADD COLUMN IF NOT EXISTS "source_mtime" bigint NOT NULL DEFAULT 0;
ALTER TABLE "source_insight_512" ADD COLUMN IF NOT EXISTS "source_mtime" bigint NOT NULL DEFAULT 0;
ALTER TABLE "source_insight_384" ADD COLUMN IF NOT EXISTS "source_mtime" bigint NOT NULL DEFAULT 0;
`
}
};

View File

@ -11,6 +11,7 @@ import { getDiffStrategy } from "./core/diff/DiffStrategy"
import { InlineEdit } from './core/edit/inline-edit-processor'
import { McpHub } from './core/mcp/McpHub'
import { RAGEngine } from './core/rag/rag-engine'
import { TransEngine } from './core/transformations/trans-engine'
import { DBManager } from './database/database-manager'
import { migrateToJsonDatabase } from './database/json/migrateToJsonDatabase'
import EventListener from "./event-listener"
@ -41,6 +42,7 @@ export default class InfioPlugin extends Plugin {
private activeLeafChangeUnloadFn: (() => void) | null = null
private dbManagerInitPromise: Promise<DBManager> | null = null
private ragEngineInitPromise: Promise<RAGEngine> | null = null
private transEngineInitPromise: Promise<TransEngine> | null = null
private mcpHubInitPromise: Promise<McpHub> | null = null
settings: InfioSettings
settingTab: InfioSettingTab
@ -49,6 +51,7 @@ export default class InfioPlugin extends Plugin {
dbManager: DBManager | null = null
mcpHub: McpHub | null = null
ragEngine: RAGEngine | null = null
transEngine: TransEngine | null = null
inlineEdit: InlineEdit | null = null
diffStrategy?: DiffStrategy
dataviewManager: DataviewManager | null = null
@ -422,10 +425,14 @@ export default class InfioPlugin extends Plugin {
// Promise cleanup
this.dbManagerInitPromise = null
this.ragEngineInitPromise = null
this.transEngineInitPromise = null
this.mcpHubInitPromise = null
// RagEngine cleanup
this.ragEngine?.cleanup()
this.ragEngine = null
// TransEngine cleanup
this.transEngine?.cleanup()
this.transEngine = null
// Database cleanup
this.dbManager?.cleanup()
this.dbManager = null
@ -445,6 +452,7 @@ export default class InfioPlugin extends Plugin {
this.settings = newSettings
await this.saveData(newSettings)
this.ragEngine?.setSettings(newSettings)
this.transEngine?.setSettings(newSettings)
this.settingsListeners.forEach((listener) => listener(newSettings))
}
@ -572,6 +580,23 @@ export default class InfioPlugin extends Plugin {
return this.ragEngineInitPromise
}
async getTransEngine(): Promise<TransEngine> {
if (this.transEngine) {
return this.transEngine
}
if (!this.transEngineInitPromise) {
this.transEngineInitPromise = (async () => {
const dbManager = await this.getDbManager()
this.transEngine = new TransEngine(this.app, this.settings, dbManager)
return this.transEngine
})()
}
// if initialization is running, wait for it to complete instead of creating a new initialization promise
return this.transEngineInitPromise
}
private async migrateToJsonStorage() {
try {
const dbManager = await this.getDbManager()

View File

@ -736,7 +736,7 @@ export function parseMsgBlocks(
if (childNode.nodeName === 'path' && childNode.childNodes.length > 0) {
// @ts-expect-error - parse5 node value type
path = childNode.childNodes[0].value
} else if (childNode.nodeName === 'type' && childNode.childNodes.length > 0) {
} else if (childNode.nodeName === 'transformation' && childNode.childNodes.length > 0) {
// @ts-expect-error - parse5 node value type
transformation = childNode.childNodes[0].value
}