mirror of
https://github.com/EthanMarti/infio-copilot.git
synced 2026-01-16 08:21:55 +00:00
更新嵌入管理器以支持 GPU 加速,调整批处理大小,优化内容处理逻辑,并添加获取数据库最大修改时间的功能以提高文件索引效率。同时修复了向量管理器中的类型问题,确保模型加载和嵌入过程的稳定性。
This commit is contained in:
parent
558e3b3fe4
commit
c657a50563
@ -64,7 +64,7 @@ export const getEmbeddingModel = (
|
||||
// 确保模型已加载
|
||||
if (!embeddingManager.modelLoaded || embeddingManager.currentModel !== settings.embeddingModelId) {
|
||||
console.log(`Loading model: ${settings.embeddingModelId}`)
|
||||
await embeddingManager.loadModel(settings.embeddingModelId, false)
|
||||
await embeddingManager.loadModel(settings.embeddingModelId, true)
|
||||
}
|
||||
|
||||
const results = await embeddingManager.embedBatch(texts)
|
||||
|
||||
@ -27,7 +27,7 @@ export class VectorManager {
|
||||
constructor(app: App, dbManager: DBManager) {
|
||||
this.app = app
|
||||
this.dbManager = dbManager
|
||||
this.repository = new VectorRepository(app, dbManager.getPgClient())
|
||||
this.repository = new VectorRepository(app, dbManager.getPgClient() as any)
|
||||
}
|
||||
|
||||
async performSimilaritySearch(
|
||||
@ -88,6 +88,7 @@ export class VectorManager {
|
||||
): Promise<void> {
|
||||
let filesToIndex: TFile[]
|
||||
if (options.reindexAll) {
|
||||
console.log("updateVaultIndex reindexAll")
|
||||
filesToIndex = await this.getFilesToIndex({
|
||||
embeddingModel: embeddingModel,
|
||||
excludePatterns: options.excludePatterns,
|
||||
@ -96,17 +97,22 @@ export class VectorManager {
|
||||
})
|
||||
await this.repository.clearAllVectors(embeddingModel)
|
||||
} else {
|
||||
console.log("updateVaultIndex for update files")
|
||||
await this.cleanVectorsForDeletedFiles(embeddingModel)
|
||||
console.log("updateVaultIndex cleanVectorsForDeletedFiles")
|
||||
filesToIndex = await this.getFilesToIndex({
|
||||
embeddingModel: embeddingModel,
|
||||
excludePatterns: options.excludePatterns,
|
||||
includePatterns: options.includePatterns,
|
||||
})
|
||||
console.log("get files to index: ", filesToIndex.length)
|
||||
await this.repository.deleteVectorsForMultipleFiles(
|
||||
filesToIndex.map((file) => file.path),
|
||||
embeddingModel,
|
||||
)
|
||||
console.log("delete vectors for multiple files: ", filesToIndex.length)
|
||||
}
|
||||
console.log("get files to index: ", filesToIndex.length)
|
||||
|
||||
if (filesToIndex.length === 0) {
|
||||
return
|
||||
@ -131,6 +137,7 @@ export class VectorManager {
|
||||
"",
|
||||
],
|
||||
});
|
||||
console.log("textSplitter chunkSize: ", options.chunkSize, "overlap: ", overlap)
|
||||
|
||||
const skippedFiles: string[] = []
|
||||
const contentChunks: InsertVector[] = (
|
||||
@ -145,15 +152,16 @@ export class VectorManager {
|
||||
])
|
||||
return fileDocuments
|
||||
.map((chunk): InsertVector | null => {
|
||||
const content = removeMarkdown(chunk.pageContent).replace(/\0/g, '')
|
||||
if (!content || content.trim().length === 0) {
|
||||
// 保存原始内容,不在此处调用 removeMarkdown
|
||||
const rawContent = chunk.pageContent.replace(/\0/g, '')
|
||||
if (!rawContent || rawContent.trim().length === 0) {
|
||||
console.log("skipped chunk", chunk.pageContent)
|
||||
return null
|
||||
}
|
||||
return {
|
||||
path: file.path,
|
||||
mtime: file.stat.mtime,
|
||||
content,
|
||||
content: rawContent, // 保存原始内容
|
||||
embedding: [],
|
||||
metadata: {
|
||||
startLine: Number(chunk.metadata.loc.lines.from),
|
||||
@ -171,6 +179,8 @@ export class VectorManager {
|
||||
)
|
||||
).flat()
|
||||
|
||||
console.log("contentChunks: ", contentChunks.length)
|
||||
|
||||
if (skippedFiles.length > 0) {
|
||||
console.warn(`跳过了 ${skippedFiles.length} 个有问题的文件:`, skippedFiles)
|
||||
new Notice(`跳过了 ${skippedFiles.length} 个有问题的文件`)
|
||||
@ -186,31 +196,42 @@ export class VectorManager {
|
||||
// 减少批量大小以降低内存压力
|
||||
const insertBatchSize = 32
|
||||
let batchCount = 0
|
||||
|
||||
|
||||
try {
|
||||
if (embeddingModel.supportsBatch) {
|
||||
// 支持批量处理的提供商:使用流式处理逻辑
|
||||
const embeddingBatchSize = 32
|
||||
|
||||
const embeddingBatchSize = 32
|
||||
|
||||
for (let i = 0; i < contentChunks.length; i += embeddingBatchSize) {
|
||||
batchCount++
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + embeddingBatchSize, contentChunks.length))
|
||||
const batchTexts = batchChunks.map(chunk => chunk.content)
|
||||
|
||||
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
|
||||
await backOff(
|
||||
async () => {
|
||||
// 在嵌入之前处理 markdown,只处理一次
|
||||
const cleanedBatchData = batchChunks.map(chunk => {
|
||||
const cleanContent = removeMarkdown(chunk.content).replace(/\0/g, '')
|
||||
return { chunk, cleanContent }
|
||||
}).filter(({ cleanContent }) => cleanContent && cleanContent.trim().length > 0)
|
||||
|
||||
if (cleanedBatchData.length === 0) {
|
||||
return
|
||||
}
|
||||
|
||||
const batchTexts = cleanedBatchData.map(({ cleanContent }) => cleanContent)
|
||||
const batchEmbeddings = await embeddingModel.getBatchEmbeddings(batchTexts)
|
||||
|
||||
|
||||
// 合并embedding结果到chunk数据
|
||||
for (let j = 0; j < batchChunks.length; j++) {
|
||||
for (let j = 0; j < cleanedBatchData.length; j++) {
|
||||
const { chunk, cleanContent } = cleanedBatchData[j]
|
||||
const embeddedChunk: InsertVector = {
|
||||
path: batchChunks[j].path,
|
||||
mtime: batchChunks[j].mtime,
|
||||
content: batchChunks[j].content,
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: cleanContent, // 使用已经清理过的内容
|
||||
embedding: batchEmbeddings[j],
|
||||
metadata: batchChunks[j].metadata,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
embeddedBatch.push(embeddedChunk)
|
||||
}
|
||||
@ -229,7 +250,7 @@ export class VectorManager {
|
||||
// 清理批次数据
|
||||
embeddedBatch.length = 0
|
||||
}
|
||||
|
||||
|
||||
embeddingProgress.completed += batchChunks.length
|
||||
updateProgress?.({
|
||||
completedChunks: embeddingProgress.completed,
|
||||
@ -244,17 +265,17 @@ export class VectorManager {
|
||||
// 不支持批量处理的提供商:使用流式处理逻辑
|
||||
const limit = pLimit(32) // 从50降低到10,减少并发压力
|
||||
const abortController = new AbortController()
|
||||
|
||||
|
||||
// 流式处理:分批处理并立即插入
|
||||
for (let i = 0; i < contentChunks.length; i += insertBatchSize) {
|
||||
if (abortController.signal.aborted) {
|
||||
throw new Error('Operation was aborted')
|
||||
}
|
||||
|
||||
|
||||
batchCount++
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + insertBatchSize, contentChunks.length))
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
|
||||
const tasks = batchChunks.map((chunk) =>
|
||||
limit(async () => {
|
||||
if (abortController.signal.aborted) {
|
||||
@ -263,11 +284,18 @@ export class VectorManager {
|
||||
try {
|
||||
await backOff(
|
||||
async () => {
|
||||
const embedding = await embeddingModel.getEmbedding(chunk.content)
|
||||
// 在嵌入之前处理 markdown
|
||||
const cleanContent = removeMarkdown(chunk.content).replace(/\0/g, '')
|
||||
// 跳过清理后为空的内容
|
||||
if (!cleanContent || cleanContent.trim().length === 0) {
|
||||
return
|
||||
}
|
||||
|
||||
const embedding = await embeddingModel.getEmbedding(cleanContent)
|
||||
const embeddedChunk = {
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: chunk.content,
|
||||
content: cleanContent, // 使用清理后的内容
|
||||
embedding,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
@ -286,16 +314,16 @@ export class VectorManager {
|
||||
}
|
||||
}),
|
||||
)
|
||||
|
||||
|
||||
await Promise.all(tasks)
|
||||
|
||||
|
||||
// 立即插入当前批次
|
||||
if (embeddedBatch.length > 0) {
|
||||
await this.repository.insertVectors(embeddedBatch, embeddingModel)
|
||||
// 清理批次数据
|
||||
embeddedBatch.length = 0
|
||||
}
|
||||
|
||||
|
||||
embeddingProgress.completed += batchChunks.length
|
||||
updateProgress?.({
|
||||
completedChunks: embeddingProgress.completed,
|
||||
@ -339,9 +367,23 @@ export class VectorManager {
|
||||
)
|
||||
|
||||
// Embed the files
|
||||
const textSplitter = new MarkdownTextSplitter({
|
||||
const overlap = Math.floor(chunkSize * 0.15)
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize: chunkSize,
|
||||
chunkOverlap: Math.floor(chunkSize * 0.15)
|
||||
chunkOverlap: overlap,
|
||||
separators: [
|
||||
"\n\n",
|
||||
"\n",
|
||||
".",
|
||||
",",
|
||||
" ",
|
||||
"\u200b", // Zero-width space
|
||||
"\uff0c", // Fullwidth comma
|
||||
"\u3001", // Ideographic comma
|
||||
"\uff0e", // Fullwidth full stop
|
||||
"\u3002", // Ideographic full stop
|
||||
"",
|
||||
],
|
||||
});
|
||||
let fileContent = await this.app.vault.cachedRead(file)
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
@ -352,14 +394,15 @@ export class VectorManager {
|
||||
|
||||
const contentChunks: InsertVector[] = fileDocuments
|
||||
.map((chunk): InsertVector | null => {
|
||||
const content = removeMarkdown(chunk.pageContent).replace(/\0/g, '')
|
||||
if (!content || content.trim().length === 0) {
|
||||
// 保存原始内容,不在此处调用 removeMarkdown
|
||||
const rawContent = String(chunk.pageContent || '').replace(/\0/g, '')
|
||||
if (!rawContent || rawContent.trim().length === 0) {
|
||||
return null
|
||||
}
|
||||
return {
|
||||
path: file.path,
|
||||
mtime: file.stat.mtime,
|
||||
content,
|
||||
content: rawContent, // 保存原始内容
|
||||
embedding: [],
|
||||
metadata: {
|
||||
startLine: Number(chunk.metadata.loc.lines.from),
|
||||
@ -372,32 +415,43 @@ export class VectorManager {
|
||||
// 减少批量大小以降低内存压力
|
||||
const insertBatchSize = 16 // 从64降低到16
|
||||
let batchCount = 0
|
||||
|
||||
|
||||
try {
|
||||
if (embeddingModel.supportsBatch) {
|
||||
// 支持批量处理的提供商:使用流式处理逻辑
|
||||
const embeddingBatchSize = 16 // 从64降低到16
|
||||
|
||||
|
||||
for (let i = 0; i < contentChunks.length; i += embeddingBatchSize) {
|
||||
batchCount++
|
||||
console.log(`Embedding batch ${batchCount} of ${Math.ceil(contentChunks.length / embeddingBatchSize)}`)
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + embeddingBatchSize, contentChunks.length))
|
||||
const batchTexts = batchChunks.map(chunk => chunk.content)
|
||||
|
||||
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
|
||||
await backOff(
|
||||
async () => {
|
||||
// 在嵌入之前处理 markdown,只处理一次
|
||||
const cleanedBatchData = batchChunks.map(chunk => {
|
||||
const cleanContent = removeMarkdown(chunk.content).replace(/\0/g, '')
|
||||
return { chunk, cleanContent }
|
||||
}).filter(({ cleanContent }) => cleanContent && cleanContent.trim().length > 0)
|
||||
|
||||
if (cleanedBatchData.length === 0) {
|
||||
return
|
||||
}
|
||||
|
||||
const batchTexts = cleanedBatchData.map(({ cleanContent }) => cleanContent)
|
||||
const batchEmbeddings = await embeddingModel.getBatchEmbeddings(batchTexts)
|
||||
|
||||
|
||||
// 合并embedding结果到chunk数据
|
||||
for (let j = 0; j < batchChunks.length; j++) {
|
||||
for (let j = 0; j < cleanedBatchData.length; j++) {
|
||||
const { chunk, cleanContent } = cleanedBatchData[j]
|
||||
const embeddedChunk: InsertVector = {
|
||||
path: batchChunks[j].path,
|
||||
mtime: batchChunks[j].mtime,
|
||||
content: batchChunks[j].content,
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: cleanContent, // 使用已经清理过的内容
|
||||
embedding: batchEmbeddings[j],
|
||||
metadata: batchChunks[j].metadata,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
embeddedBatch.push(embeddedChunk)
|
||||
}
|
||||
@ -424,17 +478,17 @@ export class VectorManager {
|
||||
// 不支持批量处理的提供商:使用流式处理逻辑
|
||||
const limit = pLimit(10) // 从50降低到10
|
||||
const abortController = new AbortController()
|
||||
|
||||
|
||||
// 流式处理:分批处理并立即插入
|
||||
for (let i = 0; i < contentChunks.length; i += insertBatchSize) {
|
||||
if (abortController.signal.aborted) {
|
||||
throw new Error('Operation was aborted')
|
||||
}
|
||||
|
||||
|
||||
batchCount++
|
||||
const batchChunks = contentChunks.slice(i, Math.min(i + insertBatchSize, contentChunks.length))
|
||||
const embeddedBatch: InsertVector[] = []
|
||||
|
||||
|
||||
const tasks = batchChunks.map((chunk) =>
|
||||
limit(async () => {
|
||||
if (abortController.signal.aborted) {
|
||||
@ -443,11 +497,18 @@ export class VectorManager {
|
||||
try {
|
||||
await backOff(
|
||||
async () => {
|
||||
const embedding = await embeddingModel.getEmbedding(chunk.content)
|
||||
// 在嵌入之前处理 markdown
|
||||
const cleanContent = removeMarkdown(chunk.content).replace(/\0/g, '')
|
||||
// 跳过清理后为空的内容
|
||||
if (!cleanContent || cleanContent.trim().length === 0) {
|
||||
return
|
||||
}
|
||||
|
||||
const embedding = await embeddingModel.getEmbedding(cleanContent)
|
||||
const embeddedChunk = {
|
||||
path: chunk.path,
|
||||
mtime: chunk.mtime,
|
||||
content: chunk.content,
|
||||
content: cleanContent, // 使用清理后的内容
|
||||
embedding,
|
||||
metadata: chunk.metadata,
|
||||
}
|
||||
@ -466,9 +527,9 @@ export class VectorManager {
|
||||
}
|
||||
}),
|
||||
)
|
||||
|
||||
|
||||
await Promise.all(tasks)
|
||||
|
||||
|
||||
// 立即插入当前批次
|
||||
if (embeddedBatch.length > 0) {
|
||||
await this.repository.insertVectors(embeddedBatch, embeddingModel)
|
||||
@ -522,8 +583,9 @@ export class VectorManager {
|
||||
excludePatterns: string[]
|
||||
includePatterns: string[]
|
||||
reindexAll?: boolean
|
||||
}): Promise<TFile[]> {
|
||||
}): Promise<TFile[]> {
|
||||
let filesToIndex = this.app.vault.getMarkdownFiles()
|
||||
console.log("get all vault files: ", filesToIndex.length)
|
||||
|
||||
filesToIndex = filesToIndex.filter((file) => {
|
||||
return !excludePatterns.some((pattern) => minimatch(file.path, pattern))
|
||||
@ -538,39 +600,24 @@ export class VectorManager {
|
||||
if (reindexAll) {
|
||||
return filesToIndex
|
||||
}
|
||||
// Check for updated or new files
|
||||
filesToIndex = await Promise.all(
|
||||
filesToIndex.map(async (file) => {
|
||||
try {
|
||||
const fileChunks = await this.repository.getVectorsByFilePath(
|
||||
file.path,
|
||||
embeddingModel,
|
||||
)
|
||||
if (fileChunks.length === 0) {
|
||||
// File is not indexed, so we need to index it
|
||||
let fileContent = await this.app.vault.cachedRead(file)
|
||||
// 清理null字节,防止PostgreSQL UTF8编码错误
|
||||
fileContent = fileContent.replace(/\0/g, '')
|
||||
if (fileContent.length === 0) {
|
||||
// Ignore empty files
|
||||
return null
|
||||
}
|
||||
return file
|
||||
}
|
||||
const outOfDate = file.stat.mtime > fileChunks[0].mtime
|
||||
if (outOfDate) {
|
||||
// File has changed, so we need to re-index it
|
||||
console.log("File has changed, so we need to re-index it", file.path)
|
||||
return file
|
||||
}
|
||||
return null
|
||||
} catch (error) {
|
||||
console.warn(`跳过文件 ${file.path}:`, error.message)
|
||||
return null
|
||||
}
|
||||
}),
|
||||
).then((files) => files.filter(Boolean))
|
||||
|
||||
return filesToIndex
|
||||
// 优化流程:使用数据库最大mtime来过滤需要更新的文件
|
||||
try {
|
||||
const maxMtime = await this.repository.getMaxMtime(embeddingModel)
|
||||
console.log("Database max mtime:", maxMtime)
|
||||
|
||||
if (maxMtime === null) {
|
||||
// 数据库中没有任何向量,需要索引所有文件
|
||||
return filesToIndex
|
||||
}
|
||||
|
||||
// 筛选出在数据库最后更新时间之后修改的文件
|
||||
return filesToIndex.filter((file) => {
|
||||
return file.stat.mtime > maxMtime
|
||||
})
|
||||
} catch (error) {
|
||||
console.error("Error getting max mtime from database:", error)
|
||||
return []
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -33,6 +33,17 @@ export class VectorRepository {
|
||||
return result.rows.map((row: { path: string }) => row.path)
|
||||
}
|
||||
|
||||
async getMaxMtime(embeddingModel: EmbeddingModel): Promise<number | null> {
|
||||
if (!this.db) {
|
||||
throw new DatabaseNotInitializedException()
|
||||
}
|
||||
const tableName = this.getTableName(embeddingModel)
|
||||
const result = await this.db.query<{ max_mtime: number | null }>(
|
||||
`SELECT MAX(mtime) as max_mtime FROM "${tableName}"`
|
||||
)
|
||||
return result.rows[0]?.max_mtime || null
|
||||
}
|
||||
|
||||
async getVectorsByFilePath(
|
||||
filePath: string,
|
||||
embeddingModel: EmbeddingModel,
|
||||
|
||||
@ -4,284 +4,285 @@ import EmbedWorker from './embed.worker';
|
||||
|
||||
// 类型定义
|
||||
export interface EmbedResult {
|
||||
vec: number[];
|
||||
tokens: number;
|
||||
embed_input?: string;
|
||||
vec: number[];
|
||||
tokens: number;
|
||||
embed_input?: string;
|
||||
}
|
||||
|
||||
export interface ModelLoadResult {
|
||||
model_loaded: boolean;
|
||||
model_loaded: boolean;
|
||||
}
|
||||
|
||||
export interface ModelUnloadResult {
|
||||
model_unloaded: boolean;
|
||||
model_unloaded: boolean;
|
||||
}
|
||||
|
||||
export interface TokenCountResult {
|
||||
tokens: number;
|
||||
tokens: number;
|
||||
}
|
||||
|
||||
export class EmbeddingManager {
|
||||
private worker: Worker;
|
||||
private requests = new Map<number, { resolve: (value: any) => void; reject: (reason?: any) => void }>();
|
||||
private nextRequestId = 0;
|
||||
private isModelLoaded = false;
|
||||
private currentModelId: string | null = null;
|
||||
private worker: Worker;
|
||||
private requests = new Map<number, { resolve: (value: any) => void; reject: (reason?: any) => void }>();
|
||||
private nextRequestId = 0;
|
||||
private isModelLoaded = false;
|
||||
private currentModelId: string | null = null;
|
||||
|
||||
constructor() {
|
||||
// 创建 Worker,使用与 pgworker 相同的模式
|
||||
this.worker = new EmbedWorker();
|
||||
constructor() {
|
||||
// 创建 Worker,使用与 pgworker 相同的模式
|
||||
this.worker = new EmbedWorker();
|
||||
|
||||
// 统一监听来自 Worker 的所有消息
|
||||
this.worker.onmessage = (event) => {
|
||||
try {
|
||||
const { id, result, error } = event.data;
|
||||
// 统一监听来自 Worker 的所有消息
|
||||
this.worker.onmessage = (event) => {
|
||||
try {
|
||||
const { id, result, error } = event.data;
|
||||
|
||||
// 根据返回的 id 找到对应的 Promise 回调
|
||||
const request = this.requests.get(id);
|
||||
// 根据返回的 id 找到对应的 Promise 回调
|
||||
const request = this.requests.get(id);
|
||||
|
||||
if (request) {
|
||||
if (error) {
|
||||
request.reject(new Error(error));
|
||||
} else {
|
||||
request.resolve(result);
|
||||
}
|
||||
// 完成后从 Map 中删除
|
||||
this.requests.delete(id);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error("Error processing worker message:", err);
|
||||
// 拒绝所有待处理的请求
|
||||
this.requests.forEach(request => {
|
||||
request.reject(new Error(`Worker message processing error: ${err.message}`));
|
||||
});
|
||||
this.requests.clear();
|
||||
}
|
||||
};
|
||||
if (request) {
|
||||
if (error) {
|
||||
request.reject(new Error(error));
|
||||
} else {
|
||||
request.resolve(result);
|
||||
}
|
||||
// 完成后从 Map 中删除
|
||||
this.requests.delete(id);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error("Error processing worker message:", err);
|
||||
// 拒绝所有待处理的请求
|
||||
this.requests.forEach(request => {
|
||||
request.reject(new Error(`Worker message processing error: ${err.message}`));
|
||||
});
|
||||
this.requests.clear();
|
||||
}
|
||||
};
|
||||
|
||||
this.worker.onerror = (error) => {
|
||||
console.error("EmbeddingWorker error:", error);
|
||||
// 拒绝所有待处理的请求
|
||||
this.requests.forEach(request => {
|
||||
request.reject(new Error(`Worker error: ${error.message || 'Unknown worker error'}`));
|
||||
});
|
||||
this.requests.clear();
|
||||
|
||||
// 重置状态
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
};
|
||||
}
|
||||
this.worker.onerror = (error) => {
|
||||
console.error("EmbeddingWorker error:", error);
|
||||
// 拒绝所有待处理的请求
|
||||
this.requests.forEach(request => {
|
||||
request.reject(new Error(`Worker error: ${error.message || 'Unknown worker error'}`));
|
||||
});
|
||||
this.requests.clear();
|
||||
|
||||
// 重置状态
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* 向 Worker 发送一个请求,并返回一个 Promise,该 Promise 将在收到响应时解析。
|
||||
* @param method 要调用的方法 (e.g., 'load', 'embed_batch')
|
||||
* @param params 方法所需的参数
|
||||
*/
|
||||
private postRequest<T>(method: string, params: any): Promise<T> {
|
||||
return new Promise<T>((resolve, reject) => {
|
||||
const id = this.nextRequestId++;
|
||||
this.requests.set(id, { resolve, reject });
|
||||
this.worker.postMessage({ method, params, id });
|
||||
});
|
||||
}
|
||||
/**
|
||||
* 向 Worker 发送一个请求,并返回一个 Promise,该 Promise 将在收到响应时解析。
|
||||
* @param method 要调用的方法 (e.g., 'load', 'embed_batch')
|
||||
* @param params 方法所需的参数
|
||||
*/
|
||||
private postRequest<T>(method: string, params: any): Promise<T> {
|
||||
return new Promise<T>((resolve, reject) => {
|
||||
const id = this.nextRequestId++;
|
||||
this.requests.set(id, { resolve, reject });
|
||||
this.worker.postMessage({ method, params, id });
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* 加载指定的嵌入模型到 Worker 中。
|
||||
* @param modelId 模型ID, 例如 'TaylorAI/bge-micro-v2'
|
||||
* @param useGpu 是否使用GPU加速,默认为false
|
||||
*/
|
||||
public async loadModel(modelId: string, useGpu: boolean = false): Promise<ModelLoadResult> {
|
||||
console.log(`Loading embedding model: ${modelId}, GPU: ${useGpu}`);
|
||||
|
||||
try {
|
||||
// 如果已经加载了相同的模型,直接返回
|
||||
if (this.isModelLoaded && this.currentModelId === modelId) {
|
||||
console.log(`Model ${modelId} already loaded`);
|
||||
return { model_loaded: true };
|
||||
}
|
||||
|
||||
// 如果加载了不同的模型,先卸载
|
||||
if (this.isModelLoaded && this.currentModelId !== modelId) {
|
||||
console.log(`Unloading previous model: ${this.currentModelId}`);
|
||||
await this.unloadModel();
|
||||
}
|
||||
|
||||
const result = await this.postRequest<ModelLoadResult>('load', {
|
||||
model_key: modelId,
|
||||
use_gpu: useGpu
|
||||
});
|
||||
|
||||
this.isModelLoaded = result.model_loaded;
|
||||
this.currentModelId = result.model_loaded ? modelId : null;
|
||||
|
||||
if (result.model_loaded) {
|
||||
console.log(`Model ${modelId} loaded successfully`);
|
||||
}
|
||||
|
||||
return result;
|
||||
} catch (error) {
|
||||
console.error(`Failed to load model ${modelId}:`, error);
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* 加载指定的嵌入模型到 Worker 中。
|
||||
* @param modelId 模型ID, 例如 'TaylorAI/bge-micro-v2'
|
||||
* @param useGpu 是否使用GPU加速,默认为false
|
||||
*/
|
||||
public async loadModel(modelId: string, useGpu: boolean = false): Promise<ModelLoadResult> {
|
||||
console.log(`Loading embedding model: ${modelId}, GPU: ${useGpu}`);
|
||||
|
||||
/**
|
||||
* 为一批文本生成嵌入向量。
|
||||
* @param texts 要处理的文本数组
|
||||
* @returns 返回一个包含向量和 token 信息的对象数组
|
||||
*/
|
||||
public async embedBatch(texts: string[]): Promise<EmbedResult[]> {
|
||||
if (!this.isModelLoaded) {
|
||||
throw new Error('Model not loaded. Please call loadModel() first.');
|
||||
}
|
||||
|
||||
if (!texts || texts.length === 0) {
|
||||
return [];
|
||||
}
|
||||
|
||||
console.log(`Generating embeddings for ${texts.length} texts`);
|
||||
|
||||
try {
|
||||
const inputs = texts.map(text => ({ embed_input: text }));
|
||||
const results = await this.postRequest<EmbedResult[]>('embed_batch', { inputs });
|
||||
|
||||
console.log(`Generated ${results.length} embeddings`);
|
||||
return results;
|
||||
} catch (error) {
|
||||
console.error('Failed to generate embeddings:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
try {
|
||||
// 如果已经加载了相同的模型,直接返回
|
||||
if (this.isModelLoaded && this.currentModelId === modelId) {
|
||||
console.log(`Model ${modelId} already loaded`);
|
||||
return { model_loaded: true };
|
||||
}
|
||||
|
||||
/**
|
||||
* 为单个文本生成嵌入向量。
|
||||
* @param text 要处理的文本
|
||||
* @returns 返回包含向量和 token 信息的对象
|
||||
*/
|
||||
public async embed(text: string): Promise<EmbedResult> {
|
||||
if (!text || text.trim().length === 0) {
|
||||
throw new Error('Text cannot be empty');
|
||||
}
|
||||
|
||||
const results = await this.embedBatch([text]);
|
||||
if (results.length === 0) {
|
||||
throw new Error('Failed to generate embedding');
|
||||
}
|
||||
|
||||
return results[0];
|
||||
}
|
||||
// 如果加载了不同的模型,先卸载
|
||||
if (this.isModelLoaded && this.currentModelId !== modelId) {
|
||||
console.log(`Unloading previous model: ${this.currentModelId}`);
|
||||
await this.unloadModel();
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算文本的 token 数量。
|
||||
* @param text 要计算的文本
|
||||
*/
|
||||
public async countTokens(text: string): Promise<TokenCountResult> {
|
||||
if (!this.isModelLoaded) {
|
||||
throw new Error('Model not loaded. Please call loadModel() first.');
|
||||
}
|
||||
|
||||
if (!text) {
|
||||
return { tokens: 0 };
|
||||
}
|
||||
|
||||
try {
|
||||
return await this.postRequest<TokenCountResult>('count_tokens', text);
|
||||
} catch (error) {
|
||||
console.error('Failed to count tokens:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
const result = await this.postRequest<ModelLoadResult>('load', {
|
||||
model_key: modelId,
|
||||
use_gpu: useGpu
|
||||
});
|
||||
|
||||
/**
|
||||
* 卸载模型,释放内存。
|
||||
*/
|
||||
public async unloadModel(): Promise<ModelUnloadResult> {
|
||||
if (!this.isModelLoaded) {
|
||||
console.log('No model to unload');
|
||||
return { model_unloaded: true };
|
||||
}
|
||||
|
||||
try {
|
||||
console.log(`Unloading model: ${this.currentModelId}`);
|
||||
const result = await this.postRequest<ModelUnloadResult>('unload', {});
|
||||
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
|
||||
console.log('Model unloaded successfully');
|
||||
return result;
|
||||
} catch (error) {
|
||||
console.error('Failed to unload model:', error);
|
||||
// 即使卸载失败,也重置状态
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
this.isModelLoaded = result.model_loaded;
|
||||
this.currentModelId = result.model_loaded ? modelId : null;
|
||||
|
||||
/**
|
||||
* 检查模型是否已加载。
|
||||
*/
|
||||
public get modelLoaded(): boolean {
|
||||
return this.isModelLoaded;
|
||||
}
|
||||
if (result.model_loaded) {
|
||||
console.log(`Model ${modelId} loaded successfully`);
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取当前加载的模型ID。
|
||||
*/
|
||||
public get currentModel(): string | null {
|
||||
return this.currentModelId;
|
||||
}
|
||||
return result;
|
||||
} catch (error) {
|
||||
console.error(`Failed to load model ${modelId}:`, error);
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取支持的模型列表。
|
||||
*/
|
||||
public getSupportedModels(): string[] {
|
||||
return [
|
||||
'Xenova/all-MiniLM-L6-v2',
|
||||
'Xenova/bge-small-en-v1.5',
|
||||
'Xenova/bge-base-en-v1.5',
|
||||
'Xenova/jina-embeddings-v2-base-zh',
|
||||
'Xenova/jina-embeddings-v2-small-en',
|
||||
'Xenova/multilingual-e5-small',
|
||||
'Xenova/multilingual-e5-base',
|
||||
'Xenova/gte-small',
|
||||
'Xenova/e5-small-v2',
|
||||
'Xenova/e5-base-v2'
|
||||
];
|
||||
}
|
||||
/**
|
||||
* 为一批文本生成嵌入向量。
|
||||
* @param texts 要处理的文本数组
|
||||
* @returns 返回一个包含向量和 token 信息的对象数组
|
||||
*/
|
||||
public async embedBatch(texts: string[]): Promise<EmbedResult[]> {
|
||||
if (!this.isModelLoaded) {
|
||||
throw new Error('Model not loaded. Please call loadModel() first.');
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取模型信息。
|
||||
*/
|
||||
public getModelInfo(modelId: string): { dims: number; maxTokens: number; description: string } | null {
|
||||
const modelInfoMap: Record<string, { dims: number; maxTokens: number; description: string }> = {
|
||||
'Xenova/all-MiniLM-L6-v2': { dims: 384, maxTokens: 512, description: 'All-MiniLM-L6-v2 (推荐,轻量级)' },
|
||||
'Xenova/bge-small-en-v1.5': { dims: 384, maxTokens: 512, description: 'BGE-small-en-v1.5' },
|
||||
'Xenova/bge-base-en-v1.5': { dims: 768, maxTokens: 512, description: 'BGE-base-en-v1.5 (更高质量)' },
|
||||
'Xenova/jina-embeddings-v2-base-zh': { dims: 768, maxTokens: 8192, description: 'Jina-v2-base-zh (中英双语)' },
|
||||
'Xenova/jina-embeddings-v2-small-en': { dims: 512, maxTokens: 8192, description: 'Jina-v2-small-en' },
|
||||
'Xenova/multilingual-e5-small': { dims: 384, maxTokens: 512, description: 'E5-small (多语言)' },
|
||||
'Xenova/multilingual-e5-base': { dims: 768, maxTokens: 512, description: 'E5-base (多语言,更高质量)' },
|
||||
'Xenova/gte-small': { dims: 384, maxTokens: 512, description: 'GTE-small' },
|
||||
'Xenova/e5-small-v2': { dims: 384, maxTokens: 512, description: 'E5-small-v2' },
|
||||
'Xenova/e5-base-v2': { dims: 768, maxTokens: 512, description: 'E5-base-v2 (更高质量)' }
|
||||
};
|
||||
if (!texts || texts.length === 0) {
|
||||
return [];
|
||||
}
|
||||
|
||||
return modelInfoMap[modelId] || null;
|
||||
}
|
||||
console.log(`Generating embeddings for ${texts.length} texts`);
|
||||
|
||||
/**
|
||||
* 终止 Worker,释放资源。
|
||||
*/
|
||||
public terminate() {
|
||||
this.worker.terminate();
|
||||
this.requests.clear();
|
||||
this.isModelLoaded = false;
|
||||
}
|
||||
try {
|
||||
const inputs = texts.map(text => ({ embed_input: text }));
|
||||
const results = await this.postRequest<EmbedResult[]>('embed_batch', { inputs });
|
||||
|
||||
console.log(`Generated ${results.length} embeddings`);
|
||||
return results;
|
||||
} catch (error) {
|
||||
console.error('Failed to generate embeddings:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 为单个文本生成嵌入向量。
|
||||
* @param text 要处理的文本
|
||||
* @returns 返回包含向量和 token 信息的对象
|
||||
*/
|
||||
public async embed(text: string): Promise<EmbedResult> {
|
||||
if (!text || text.trim().length === 0) {
|
||||
throw new Error('Text cannot be empty');
|
||||
}
|
||||
|
||||
const results = await this.embedBatch([text]);
|
||||
if (results.length === 0) {
|
||||
throw new Error('Failed to generate embedding');
|
||||
}
|
||||
|
||||
return results[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算文本的 token 数量。
|
||||
* @param text 要计算的文本
|
||||
*/
|
||||
public async countTokens(text: string): Promise<TokenCountResult> {
|
||||
if (!this.isModelLoaded) {
|
||||
throw new Error('Model not loaded. Please call loadModel() first.');
|
||||
}
|
||||
|
||||
if (!text) {
|
||||
return { tokens: 0 };
|
||||
}
|
||||
|
||||
try {
|
||||
return await this.postRequest<TokenCountResult>('count_tokens', text);
|
||||
} catch (error) {
|
||||
console.error('Failed to count tokens:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 卸载模型,释放内存。
|
||||
*/
|
||||
public async unloadModel(): Promise<ModelUnloadResult> {
|
||||
if (!this.isModelLoaded) {
|
||||
console.log('No model to unload');
|
||||
return { model_unloaded: true };
|
||||
}
|
||||
|
||||
try {
|
||||
console.log(`Unloading model: ${this.currentModelId}`);
|
||||
const result = await this.postRequest<ModelUnloadResult>('unload', {});
|
||||
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
|
||||
console.log('Model unloaded successfully');
|
||||
return result;
|
||||
} catch (error) {
|
||||
console.error('Failed to unload model:', error);
|
||||
// 即使卸载失败,也重置状态
|
||||
this.isModelLoaded = false;
|
||||
this.currentModelId = null;
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 检查模型是否已加载。
|
||||
*/
|
||||
public get modelLoaded(): boolean {
|
||||
return this.isModelLoaded;
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取当前加载的模型ID。
|
||||
*/
|
||||
public get currentModel(): string | null {
|
||||
return this.currentModelId;
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取支持的模型列表。
|
||||
*/
|
||||
public getSupportedModels(): string[] {
|
||||
return [
|
||||
'TaylorAI/bge-micro-v2',
|
||||
'Xenova/all-MiniLM-L6-v2',
|
||||
'Xenova/bge-small-en-v1.5',
|
||||
'Xenova/bge-base-en-v1.5',
|
||||
'Xenova/jina-embeddings-v2-base-zh',
|
||||
'Xenova/jina-embeddings-v2-small-en',
|
||||
'Xenova/multilingual-e5-small',
|
||||
'Xenova/multilingual-e5-base',
|
||||
'Xenova/gte-small',
|
||||
'Xenova/e5-small-v2',
|
||||
'Xenova/e5-base-v2'
|
||||
];
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取模型信息。
|
||||
*/
|
||||
public getModelInfo(modelId: string): { dims: number; maxTokens: number; description: string } | null {
|
||||
const modelInfoMap: Record<string, { dims: number; maxTokens: number; description: string }> = {
|
||||
'Xenova/all-MiniLM-L6-v2': { dims: 384, maxTokens: 512, description: 'All-MiniLM-L6-v2 (推荐,轻量级)' },
|
||||
'Xenova/bge-small-en-v1.5': { dims: 384, maxTokens: 512, description: 'BGE-small-en-v1.5' },
|
||||
'Xenova/bge-base-en-v1.5': { dims: 768, maxTokens: 512, description: 'BGE-base-en-v1.5 (更高质量)' },
|
||||
'Xenova/jina-embeddings-v2-base-zh': { dims: 768, maxTokens: 8192, description: 'Jina-v2-base-zh (中英双语)' },
|
||||
'Xenova/jina-embeddings-v2-small-en': { dims: 512, maxTokens: 8192, description: 'Jina-v2-small-en' },
|
||||
'Xenova/multilingual-e5-small': { dims: 384, maxTokens: 512, description: 'E5-small (多语言)' },
|
||||
'Xenova/multilingual-e5-base': { dims: 768, maxTokens: 512, description: 'E5-base (多语言,更高质量)' },
|
||||
'Xenova/gte-small': { dims: 384, maxTokens: 512, description: 'GTE-small' },
|
||||
'Xenova/e5-small-v2': { dims: 384, maxTokens: 512, description: 'E5-small-v2' },
|
||||
'Xenova/e5-base-v2': { dims: 768, maxTokens: 512, description: 'E5-base-v2 (更高质量)' }
|
||||
};
|
||||
|
||||
return modelInfoMap[modelId] || null;
|
||||
}
|
||||
|
||||
/**
|
||||
* 终止 Worker,释放资源。
|
||||
*/
|
||||
public terminate() {
|
||||
this.worker.terminate();
|
||||
this.requests.clear();
|
||||
this.isModelLoaded = false;
|
||||
}
|
||||
}
|
||||
|
||||
@ -48,7 +48,7 @@ async function loadTransformers() {
|
||||
env.allowRemoteModels = true;
|
||||
|
||||
// 配置 WASM 后端 - 修复线程配置
|
||||
env.backends.onnx.wasm.numThreads = 4; // 在 Worker 中使用单线程,避免竞态条件
|
||||
env.backends.onnx.wasm.numThreads = 1; // 在 Worker 中使用单线程,避免竞态条件
|
||||
env.backends.onnx.wasm.simd = true;
|
||||
|
||||
// 禁用 Node.js 特定功能
|
||||
@ -201,7 +201,7 @@ async function embedBatch(inputs: EmbedInput[]): Promise<EmbedResult[]> {
|
||||
}
|
||||
|
||||
// 批处理大小(可以根据需要调整)
|
||||
const batchSize = 1;
|
||||
const batchSize = 8;
|
||||
|
||||
if (filteredInputs.length > batchSize) {
|
||||
console.log(`Processing ${filteredInputs.length} inputs in batches of ${batchSize}`);
|
||||
|
||||
@ -8,8 +8,8 @@ export { EmbeddingManager };
|
||||
|
||||
// 导出类型定义
|
||||
export type {
|
||||
EmbedResult,
|
||||
ModelLoadResult,
|
||||
ModelUnloadResult,
|
||||
TokenCountResult
|
||||
EmbedResult,
|
||||
ModelLoadResult,
|
||||
ModelUnloadResult,
|
||||
TokenCountResult
|
||||
} from './EmbeddingManager';
|
||||
|
||||
@ -1641,6 +1641,7 @@ export const localProviderDefaultAutoCompleteModelId = null // this is not suppo
|
||||
export const localProviderDefaultEmbeddingModelId: keyof typeof localProviderEmbeddingModels = "TaylorAI/bge-micro-v2"
|
||||
|
||||
export const localProviderEmbeddingModels = {
|
||||
'TaylorAI/bge-micro-v2': { dimensions: 384, description: 'BGE-micro-v2 (本地,512令牌,384维)' },
|
||||
'Xenova/all-MiniLM-L6-v2': { dimensions: 384, description: 'All-MiniLM-L6-v2 (推荐,轻量级)' },
|
||||
'Xenova/bge-small-en-v1.5': { dimensions: 384, description: 'BGE-small-en-v1.5' },
|
||||
'Xenova/bge-base-en-v1.5': { dimensions: 768, description: 'BGE-base-en-v1.5 (更高质量)' },
|
||||
@ -1651,8 +1652,6 @@ export const localProviderEmbeddingModels = {
|
||||
'Xenova/gte-small': { dimensions: 384, description: 'GTE-small' },
|
||||
'Xenova/e5-small-v2': { dimensions: 384, description: 'E5-small-v2' },
|
||||
'Xenova/e5-base-v2': { dimensions: 768, description: 'E5-base-v2 (更高质量)' },
|
||||
// 新增的模型
|
||||
'TaylorAI/bge-micro-v2': { dimensions: 384, description: 'BGE-micro-v2 (本地,512令牌,384维)' },
|
||||
'Snowflake/snowflake-arctic-embed-xs': { dimensions: 384, description: 'Snowflake Arctic Embed XS (本地,512令牌,384维)' },
|
||||
'Snowflake/snowflake-arctic-embed-s': { dimensions: 384, description: 'Snowflake Arctic Embed Small (本地,512令牌,384维)' },
|
||||
'Snowflake/snowflake-arctic-embed-m': { dimensions: 768, description: 'Snowflake Arctic Embed Medium (本地,512令牌,768维)' },
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user