mirror of
https://github.com/EthanMarti/infio-copilot.git
synced 2026-01-16 08:21:55 +00:00
400 lines
10 KiB
TypeScript
400 lines
10 KiB
TypeScript
console.log('Embedding worker loaded');
|
||
|
||
interface EmbedInput {
|
||
embed_input: string;
|
||
}
|
||
|
||
interface EmbedResult {
|
||
vec: number[];
|
||
tokens: number;
|
||
embed_input?: string;
|
||
}
|
||
|
||
interface WorkerMessage {
|
||
method: string;
|
||
params: any;
|
||
id: number;
|
||
worker_id?: string;
|
||
}
|
||
|
||
interface WorkerResponse {
|
||
id: number;
|
||
result?: any;
|
||
error?: string;
|
||
worker_id?: string;
|
||
}
|
||
|
||
// 全局变量
|
||
let model: any = null;
|
||
let pipeline: any = null;
|
||
let tokenizer: any = null;
|
||
let processing_message = false;
|
||
let transformersLoaded = false;
|
||
|
||
// 动态导入 Transformers.js
|
||
async function loadTransformers() {
|
||
if (transformersLoaded) return;
|
||
|
||
try {
|
||
console.log('Loading Transformers.js...');
|
||
|
||
// 尝试使用旧版本的 Transformers.js,它在 Worker 中更稳定
|
||
const { pipeline: pipelineFactory, env, AutoTokenizer } = await import('@xenova/transformers');
|
||
|
||
// 配置环境以适应浏览器 Worker
|
||
env.allowLocalModels = false;
|
||
env.allowRemoteModels = true;
|
||
|
||
// 配置 WASM 后端 - 修复线程配置
|
||
env.backends.onnx.wasm.numThreads = 1; // 在 Worker 中使用单线程,避免竞态条件
|
||
env.backends.onnx.wasm.simd = true;
|
||
|
||
// 禁用 Node.js 特定功能
|
||
env.useFS = false;
|
||
env.useBrowserCache = true;
|
||
|
||
(globalThis as any).pipelineFactory = pipelineFactory;
|
||
(globalThis as any).AutoTokenizer = AutoTokenizer;
|
||
(globalThis as any).env = env;
|
||
|
||
transformersLoaded = true;
|
||
console.log('Transformers.js loaded successfully');
|
||
} catch (error) {
|
||
console.error('Failed to load Transformers.js:', error);
|
||
throw new Error(`Failed to load Transformers.js: ${error}`);
|
||
}
|
||
}
|
||
|
||
async function loadModel(modelKey: string, useGpu: boolean = false) {
|
||
try {
|
||
console.log(`Loading model: ${modelKey}, GPU: ${useGpu}`);
|
||
|
||
// 确保 Transformers.js 已加载
|
||
await loadTransformers();
|
||
|
||
const pipelineFactory = (globalThis as any).pipelineFactory;
|
||
const AutoTokenizer = (globalThis as any).AutoTokenizer;
|
||
const env = (globalThis as any).env;
|
||
|
||
// 配置管道选项
|
||
const pipelineOpts: any = {
|
||
quantized: true,
|
||
// 修复进度回调,添加错误处理
|
||
progress_callback: (progress: any) => {
|
||
try {
|
||
if (progress && typeof progress === 'object') {
|
||
console.log('Model loading progress:', progress);
|
||
}
|
||
} catch (error) {
|
||
// 忽略进度回调错误,避免中断模型加载
|
||
console.warn('Progress callback error (ignored):', error);
|
||
}
|
||
}
|
||
};
|
||
|
||
// GPU 配置更加谨慎
|
||
if (useGpu) {
|
||
try {
|
||
// 检查 WebGPU 支持
|
||
console.log("useGpu", useGpu)
|
||
if (typeof navigator !== 'undefined' && 'gpu' in navigator) {
|
||
const gpu = (navigator as any).gpu;
|
||
if (gpu && typeof gpu.requestAdapter === 'function') {
|
||
console.log('[Transformers] Attempting to use GPU');
|
||
pipelineOpts.device = 'webgpu';
|
||
pipelineOpts.dtype = 'fp32';
|
||
} else {
|
||
console.log('[Transformers] WebGPU not fully supported, using CPU');
|
||
}
|
||
} else {
|
||
console.log('[Transformers] WebGPU not available, using CPU');
|
||
}
|
||
} catch (error) {
|
||
console.warn('[Transformers] Error checking GPU support, falling back to CPU:', error);
|
||
}
|
||
} else {
|
||
console.log('[Transformers] Using CPU');
|
||
}
|
||
|
||
// 创建嵌入管道
|
||
pipeline = await pipelineFactory('feature-extraction', modelKey, pipelineOpts);
|
||
|
||
// 创建分词器
|
||
tokenizer = await AutoTokenizer.from_pretrained(modelKey);
|
||
|
||
model = {
|
||
loaded: true,
|
||
model_key: modelKey,
|
||
use_gpu: useGpu
|
||
};
|
||
|
||
console.log(`Model ${modelKey} loaded successfully`);
|
||
return { model_loaded: true };
|
||
|
||
} catch (error) {
|
||
console.error('Error loading model:', error);
|
||
throw new Error(`Failed to load model: ${error}`);
|
||
}
|
||
}
|
||
|
||
async function unloadModel() {
|
||
try {
|
||
console.log('Unloading model...');
|
||
|
||
if (pipeline) {
|
||
if (pipeline.destroy) {
|
||
pipeline.destroy();
|
||
}
|
||
pipeline = null;
|
||
}
|
||
|
||
if (tokenizer) {
|
||
tokenizer = null;
|
||
}
|
||
|
||
model = null;
|
||
|
||
console.log('Model unloaded successfully');
|
||
return { model_unloaded: true };
|
||
|
||
} catch (error) {
|
||
console.error('Error unloading model:', error);
|
||
throw new Error(`Failed to unload model: ${error}`);
|
||
}
|
||
}
|
||
|
||
async function countTokens(input: string) {
|
||
try {
|
||
if (!tokenizer) {
|
||
throw new Error('Tokenizer not loaded');
|
||
}
|
||
|
||
const { input_ids } = await tokenizer(input);
|
||
return { tokens: input_ids.data.length };
|
||
|
||
} catch (error) {
|
||
console.error('Error counting tokens:', error);
|
||
throw new Error(`Failed to count tokens: ${error}`);
|
||
}
|
||
}
|
||
|
||
async function embedBatch(inputs: EmbedInput[]): Promise<EmbedResult[]> {
|
||
try {
|
||
if (!pipeline || !tokenizer) {
|
||
throw new Error('Model not loaded');
|
||
}
|
||
|
||
console.log(`Processing ${inputs.length} inputs`);
|
||
|
||
// 过滤空输入
|
||
const filteredInputs = inputs.filter(item => item.embed_input && item.embed_input.length > 0);
|
||
|
||
if (filteredInputs.length === 0) {
|
||
return [];
|
||
}
|
||
|
||
// 批处理大小(可以根据需要调整)
|
||
const batchSize = 1;
|
||
|
||
if (filteredInputs.length > batchSize) {
|
||
console.log(`Processing ${filteredInputs.length} inputs in batches of ${batchSize}`);
|
||
const results: EmbedResult[] = [];
|
||
|
||
for (let i = 0; i < filteredInputs.length; i += batchSize) {
|
||
const batch = filteredInputs.slice(i, i + batchSize);
|
||
const batchResults = await processBatch(batch);
|
||
results.push(...batchResults);
|
||
}
|
||
|
||
return results;
|
||
}
|
||
|
||
return await processBatch(filteredInputs);
|
||
|
||
} catch (error) {
|
||
console.error('Error in embed batch:', error);
|
||
throw new Error(`Failed to generate embeddings: ${error}`);
|
||
}
|
||
}
|
||
|
||
async function processBatch(batchInputs: EmbedInput[]): Promise<EmbedResult[]> {
|
||
try {
|
||
// 计算每个输入的 token 数量
|
||
const tokens = await Promise.all(
|
||
batchInputs.map(item => countTokens(item.embed_input))
|
||
);
|
||
|
||
// 准备嵌入输入(处理超长文本)
|
||
const maxTokens = 512; // 大多数模型的最大 token 限制
|
||
const embedInputs = await Promise.all(
|
||
batchInputs.map(async (item, i) => {
|
||
if (tokens[i].tokens < maxTokens) {
|
||
return item.embed_input;
|
||
}
|
||
|
||
// 截断超长文本
|
||
let tokenCt = tokens[i].tokens;
|
||
let truncatedInput = item.embed_input;
|
||
|
||
while (tokenCt > maxTokens) {
|
||
const pct = maxTokens / tokenCt;
|
||
const maxChars = Math.floor(truncatedInput.length * pct * 0.9);
|
||
truncatedInput = truncatedInput.substring(0, maxChars) + '...';
|
||
tokenCt = (await countTokens(truncatedInput)).tokens;
|
||
}
|
||
|
||
tokens[i].tokens = tokenCt;
|
||
return truncatedInput;
|
||
})
|
||
);
|
||
|
||
// 生成嵌入向量
|
||
const resp = await pipeline(embedInputs, { pooling: 'mean', normalize: true });
|
||
|
||
// 处理结果
|
||
return batchInputs.map((item, i) => ({
|
||
vec: Array.from(resp[i].data).map((val: number) => Math.round(val * 1e8) / 1e8),
|
||
tokens: tokens[i].tokens,
|
||
embed_input: item.embed_input
|
||
}));
|
||
|
||
} catch (error) {
|
||
console.error('Error processing batch:', error);
|
||
|
||
// 如果批处理失败,尝试逐个处理
|
||
return Promise.all(
|
||
batchInputs.map(async (item) => {
|
||
try {
|
||
const result = await pipeline(item.embed_input, { pooling: 'mean', normalize: true });
|
||
const tokenCount = await countTokens(item.embed_input);
|
||
|
||
return {
|
||
vec: Array.from(result[0].data).map((val: number) => Math.round(val * 1e8) / 1e8),
|
||
tokens: tokenCount.tokens,
|
||
embed_input: item.embed_input
|
||
};
|
||
} catch (singleError) {
|
||
console.error('Error processing single item:', singleError);
|
||
return {
|
||
vec: [],
|
||
tokens: 0,
|
||
embed_input: item.embed_input,
|
||
error: (singleError as Error).message
|
||
} as any;
|
||
}
|
||
})
|
||
);
|
||
}
|
||
}
|
||
|
||
async function processMessage(data: WorkerMessage): Promise<WorkerResponse> {
|
||
const { method, params, id, worker_id } = data;
|
||
|
||
try {
|
||
let result: any;
|
||
|
||
switch (method) {
|
||
case 'load':
|
||
console.log('Load method called with params:', params);
|
||
result = await loadModel(params.model_key, params.use_gpu || false);
|
||
break;
|
||
|
||
case 'unload':
|
||
console.log('Unload method called');
|
||
result = await unloadModel();
|
||
break;
|
||
|
||
case 'embed_batch':
|
||
console.log('Embed batch method called');
|
||
if (!model) {
|
||
throw new Error('Model not loaded');
|
||
}
|
||
|
||
// 等待之前的处理完成
|
||
if (processing_message) {
|
||
while (processing_message) {
|
||
await new Promise(resolve => setTimeout(resolve, 100));
|
||
}
|
||
}
|
||
|
||
processing_message = true;
|
||
result = await embedBatch(params.inputs);
|
||
processing_message = false;
|
||
break;
|
||
|
||
case 'count_tokens':
|
||
console.log('Count tokens method called');
|
||
if (!model) {
|
||
throw new Error('Model not loaded');
|
||
}
|
||
|
||
// 等待之前的处理完成
|
||
if (processing_message) {
|
||
while (processing_message) {
|
||
await new Promise(resolve => setTimeout(resolve, 100));
|
||
}
|
||
}
|
||
|
||
processing_message = true;
|
||
result = await countTokens(params);
|
||
processing_message = false;
|
||
break;
|
||
|
||
default:
|
||
throw new Error(`Unknown method: ${method}`);
|
||
}
|
||
|
||
return { id, result, worker_id };
|
||
|
||
} catch (error) {
|
||
console.error('Error processing message:', error);
|
||
processing_message = false;
|
||
return { id, error: (error as Error).message, worker_id };
|
||
}
|
||
}
|
||
|
||
self.addEventListener('message', async (event) => {
|
||
try {
|
||
console.log('Worker received message:', event.data);
|
||
|
||
// 验证消息格式
|
||
if (!event.data || typeof event.data !== 'object') {
|
||
console.error('Invalid message format received');
|
||
self.postMessage({
|
||
id: -1,
|
||
error: 'Invalid message format'
|
||
});
|
||
return;
|
||
}
|
||
|
||
const response = await processMessage(event.data);
|
||
console.log('Worker sending response:', response);
|
||
self.postMessage(response);
|
||
} catch (error) {
|
||
console.error('Unhandled error in worker message handler:', error);
|
||
self.postMessage({
|
||
id: event.data?.id || -1,
|
||
error: `Worker error: ${error.message || 'Unknown error'}`
|
||
});
|
||
}
|
||
});
|
||
|
||
self.addEventListener('error', (event) => {
|
||
console.error('Worker global error:', event);
|
||
self.postMessage({
|
||
id: -1,
|
||
error: `Worker global error: ${event.message || 'Unknown error'}`
|
||
});
|
||
});
|
||
|
||
self.addEventListener('unhandledrejection', (event) => {
|
||
console.error('Worker unhandled promise rejection:', event);
|
||
self.postMessage({
|
||
id: -1,
|
||
error: `Worker unhandled rejection: ${event.reason || 'Unknown error'}`
|
||
});
|
||
event.preventDefault(); // 防止默认的控制台错误
|
||
});
|
||
|
||
console.log('Embedding worker ready');
|