mirror of
https://github.com/EthanMarti/infio-copilot.git
synced 2026-01-18 00:47:51 +00:00
409 lines
13 KiB
TypeScript
409 lines
13 KiB
TypeScript
import { compareTwoStrings } from "string-similarity"
|
|
import { closest } from "fastest-levenshtein"
|
|
import { diff_match_patch } from "diff-match-patch"
|
|
import { Change, Hunk } from "./types"
|
|
|
|
export type SearchResult = {
|
|
index: number
|
|
confidence: number
|
|
strategy: string
|
|
}
|
|
|
|
const LARGE_FILE_THRESHOLD = 1000 // lines
|
|
const UNIQUE_CONTENT_BOOST = 0.05
|
|
const DEFAULT_OVERLAP_SIZE = 3 // lines of overlap between windows
|
|
const MAX_WINDOW_SIZE = 500 // maximum lines in a window
|
|
|
|
// Helper function to calculate adaptive confidence threshold based on file size
|
|
function getAdaptiveThreshold(contentLength: number, baseThreshold: number): number {
|
|
if (contentLength <= LARGE_FILE_THRESHOLD) {
|
|
return baseThreshold
|
|
}
|
|
return Math.max(baseThreshold - 0.07, 0.8) // Reduce threshold for large files but keep minimum at 80%
|
|
}
|
|
|
|
// Helper function to evaluate content uniqueness
|
|
function evaluateContentUniqueness(searchStr: string, content: string[]): number {
|
|
const searchLines = searchStr.split("\n")
|
|
const uniqueLines = new Set(searchLines)
|
|
const contentStr = content.join("\n")
|
|
|
|
// Calculate how many search lines are relatively unique in the content
|
|
let uniqueCount = 0
|
|
for (const line of uniqueLines) {
|
|
const regex = new RegExp(line.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"), "g")
|
|
const matches = contentStr.match(regex)
|
|
if (matches && matches.length <= 2) {
|
|
// Line appears at most twice
|
|
uniqueCount++
|
|
}
|
|
}
|
|
|
|
return uniqueCount / uniqueLines.size
|
|
}
|
|
|
|
// Helper function to prepare search string from context
|
|
export function prepareSearchString(changes: Change[]): string {
|
|
const lines = changes.filter((c) => c.type === "context" || c.type === "remove").map((c) => c.originalLine)
|
|
return lines.join("\n")
|
|
}
|
|
|
|
// Helper function to evaluate similarity between two texts
|
|
export function evaluateSimilarity(original: string, modified: string): number {
|
|
return compareTwoStrings(original, modified)
|
|
}
|
|
|
|
// Helper function to validate using diff-match-patch
|
|
export function getDMPSimilarity(original: string, modified: string): number {
|
|
const dmp = new diff_match_patch()
|
|
const diffs = dmp.diff_main(original, modified)
|
|
dmp.diff_cleanupSemantic(diffs)
|
|
const patches = dmp.patch_make(original, diffs)
|
|
const [expectedText] = dmp.patch_apply(patches, original)
|
|
|
|
const similarity = evaluateSimilarity(expectedText, modified)
|
|
return similarity
|
|
}
|
|
|
|
// Helper function to validate edit results using hunk information
|
|
export function validateEditResult(hunk: Hunk, result: string): number {
|
|
// Build the expected text from the hunk
|
|
const expectedText = hunk.changes
|
|
.filter((change) => change.type === "context" || change.type === "add")
|
|
.map((change) => (change.indent ? change.indent + change.content : change.content))
|
|
.join("\n")
|
|
|
|
// Calculate similarity between the result and expected text
|
|
const similarity = getDMPSimilarity(expectedText, result)
|
|
|
|
// If the result is unchanged from original, return low confidence
|
|
const originalText = hunk.changes
|
|
.filter((change) => change.type === "context" || change.type === "remove")
|
|
.map((change) => (change.indent ? change.indent + change.content : change.content))
|
|
.join("\n")
|
|
|
|
const originalSimilarity = getDMPSimilarity(originalText, result)
|
|
if (originalSimilarity > 0.97 && similarity !== 1) {
|
|
return 0.8 * similarity // Some confidence since we found the right location
|
|
}
|
|
|
|
// For partial matches, scale the confidence but keep it high if we're close
|
|
return similarity
|
|
}
|
|
|
|
// Helper function to validate context lines against original content
|
|
function validateContextLines(searchStr: string, content: string, confidenceThreshold: number): number {
|
|
// Extract just the context lines from the search string
|
|
const contextLines = searchStr.split("\n").filter((line) => !line.startsWith("-")) // Exclude removed lines
|
|
|
|
// Compare context lines with content
|
|
const similarity = evaluateSimilarity(contextLines.join("\n"), content)
|
|
|
|
// Get adaptive threshold based on content size
|
|
const threshold = getAdaptiveThreshold(content.split("\n").length, confidenceThreshold)
|
|
|
|
// Calculate uniqueness boost
|
|
const uniquenessScore = evaluateContentUniqueness(searchStr, content.split("\n"))
|
|
const uniquenessBoost = uniquenessScore * UNIQUE_CONTENT_BOOST
|
|
|
|
// Adjust confidence based on threshold and uniqueness
|
|
return similarity < threshold ? similarity * 0.3 + uniquenessBoost : similarity + uniquenessBoost
|
|
}
|
|
|
|
// Helper function to create overlapping windows
|
|
function createOverlappingWindows(
|
|
content: string[],
|
|
searchSize: number,
|
|
overlapSize: number = DEFAULT_OVERLAP_SIZE,
|
|
): { window: string[]; startIndex: number }[] {
|
|
const windows: { window: string[]; startIndex: number }[] = []
|
|
|
|
// Ensure minimum window size is at least searchSize
|
|
const effectiveWindowSize = Math.max(searchSize, Math.min(searchSize * 2, MAX_WINDOW_SIZE))
|
|
|
|
// Ensure overlap size doesn't exceed window size
|
|
const effectiveOverlapSize = Math.min(overlapSize, effectiveWindowSize - 1)
|
|
|
|
// Calculate step size, ensure it's at least 1
|
|
const stepSize = Math.max(1, effectiveWindowSize - effectiveOverlapSize)
|
|
|
|
for (let i = 0; i < content.length; i += stepSize) {
|
|
const windowContent = content.slice(i, i + effectiveWindowSize)
|
|
if (windowContent.length >= searchSize) {
|
|
windows.push({ window: windowContent, startIndex: i })
|
|
}
|
|
}
|
|
|
|
return windows
|
|
}
|
|
|
|
// Helper function to combine overlapping matches
|
|
function combineOverlappingMatches(
|
|
matches: (SearchResult & { windowIndex: number })[],
|
|
overlapSize: number = DEFAULT_OVERLAP_SIZE,
|
|
): SearchResult[] {
|
|
if (matches.length === 0) {
|
|
return []
|
|
}
|
|
|
|
// Sort matches by confidence
|
|
matches.sort((a, b) => b.confidence - a.confidence)
|
|
|
|
const combinedMatches: SearchResult[] = []
|
|
const usedIndices = new Set<number>()
|
|
|
|
for (const match of matches) {
|
|
if (usedIndices.has(match.windowIndex)) {
|
|
continue
|
|
}
|
|
|
|
// Find overlapping matches
|
|
const overlapping = matches.filter(
|
|
(m) =>
|
|
Math.abs(m.windowIndex - match.windowIndex) === 1 &&
|
|
Math.abs(m.index - match.index) <= overlapSize &&
|
|
!usedIndices.has(m.windowIndex),
|
|
)
|
|
|
|
if (overlapping.length > 0) {
|
|
// Boost confidence if we find same match in overlapping windows
|
|
const avgConfidence =
|
|
(match.confidence + overlapping.reduce((sum, m) => sum + m.confidence, 0)) / (overlapping.length + 1)
|
|
const boost = Math.min(0.05 * overlapping.length, 0.1) // Max 10% boost
|
|
|
|
combinedMatches.push({
|
|
index: match.index,
|
|
confidence: Math.min(1, avgConfidence + boost),
|
|
strategy: `${match.strategy}-overlapping`,
|
|
})
|
|
|
|
usedIndices.add(match.windowIndex)
|
|
overlapping.forEach((m) => usedIndices.add(m.windowIndex))
|
|
} else {
|
|
combinedMatches.push({
|
|
index: match.index,
|
|
confidence: match.confidence,
|
|
strategy: match.strategy,
|
|
})
|
|
usedIndices.add(match.windowIndex)
|
|
}
|
|
}
|
|
|
|
return combinedMatches
|
|
}
|
|
|
|
export function findExactMatch(
|
|
searchStr: string,
|
|
content: string[],
|
|
startIndex: number = 0,
|
|
confidenceThreshold: number = 0.97,
|
|
): SearchResult {
|
|
const searchLines = searchStr.split("\n")
|
|
const windows = createOverlappingWindows(content.slice(startIndex), searchLines.length)
|
|
const matches: (SearchResult & { windowIndex: number })[] = []
|
|
|
|
windows.forEach((windowData, windowIndex) => {
|
|
const windowStr = windowData.window.join("\n")
|
|
const exactMatch = windowStr.indexOf(searchStr)
|
|
|
|
if (exactMatch !== -1) {
|
|
const matchedContent = windowData.window
|
|
.slice(
|
|
windowStr.slice(0, exactMatch).split("\n").length - 1,
|
|
windowStr.slice(0, exactMatch).split("\n").length - 1 + searchLines.length,
|
|
)
|
|
.join("\n")
|
|
|
|
const similarity = getDMPSimilarity(searchStr, matchedContent)
|
|
const contextSimilarity = validateContextLines(searchStr, matchedContent, confidenceThreshold)
|
|
const confidence = Math.min(similarity, contextSimilarity)
|
|
|
|
matches.push({
|
|
index: startIndex + windowData.startIndex + windowStr.slice(0, exactMatch).split("\n").length - 1,
|
|
confidence,
|
|
strategy: "exact",
|
|
windowIndex,
|
|
})
|
|
}
|
|
})
|
|
|
|
const combinedMatches = combineOverlappingMatches(matches)
|
|
return combinedMatches.length > 0 ? combinedMatches[0] : { index: -1, confidence: 0, strategy: "exact" }
|
|
}
|
|
|
|
// String similarity strategy
|
|
export function findSimilarityMatch(
|
|
searchStr: string,
|
|
content: string[],
|
|
startIndex: number = 0,
|
|
confidenceThreshold: number = 0.97,
|
|
): SearchResult {
|
|
const searchLines = searchStr.split("\n")
|
|
let bestScore = 0
|
|
let bestIndex = -1
|
|
|
|
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
|
|
const windowStr = content.slice(i, i + searchLines.length).join("\n")
|
|
const score = compareTwoStrings(searchStr, windowStr)
|
|
if (score > bestScore && score >= confidenceThreshold) {
|
|
const similarity = getDMPSimilarity(searchStr, windowStr)
|
|
const contextSimilarity = validateContextLines(searchStr, windowStr, confidenceThreshold)
|
|
const adjustedScore = Math.min(similarity, contextSimilarity) * score
|
|
|
|
if (adjustedScore > bestScore) {
|
|
bestScore = adjustedScore
|
|
bestIndex = i
|
|
}
|
|
}
|
|
}
|
|
|
|
return {
|
|
index: bestIndex,
|
|
confidence: bestIndex !== -1 ? bestScore : 0,
|
|
strategy: "similarity",
|
|
}
|
|
}
|
|
|
|
// Levenshtein strategy
|
|
export function findLevenshteinMatch(
|
|
searchStr: string,
|
|
content: string[],
|
|
startIndex: number = 0,
|
|
confidenceThreshold: number = 0.97,
|
|
): SearchResult {
|
|
const searchLines = searchStr.split("\n")
|
|
const candidates = []
|
|
|
|
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
|
|
candidates.push(content.slice(i, i + searchLines.length).join("\n"))
|
|
}
|
|
|
|
if (candidates.length > 0) {
|
|
const closestMatch = closest(searchStr, candidates)
|
|
const index = startIndex + candidates.indexOf(closestMatch)
|
|
const similarity = getDMPSimilarity(searchStr, closestMatch)
|
|
const contextSimilarity = validateContextLines(searchStr, closestMatch, confidenceThreshold)
|
|
const confidence = Math.min(similarity, contextSimilarity)
|
|
return {
|
|
index: confidence === 0 ? -1 : index,
|
|
confidence: index !== -1 ? confidence : 0,
|
|
strategy: "levenshtein",
|
|
}
|
|
}
|
|
|
|
return { index: -1, confidence: 0, strategy: "levenshtein" }
|
|
}
|
|
|
|
// Helper function to identify anchor lines
|
|
function identifyAnchors(searchStr: string): { first: string | null; last: string | null } {
|
|
const searchLines = searchStr.split("\n")
|
|
let first: string | null = null
|
|
let last: string | null = null
|
|
|
|
// Find the first non-empty line
|
|
for (const line of searchLines) {
|
|
if (line.trim()) {
|
|
first = line
|
|
break
|
|
}
|
|
}
|
|
|
|
// Find the last non-empty line
|
|
for (let i = searchLines.length - 1; i >= 0; i--) {
|
|
if (searchLines[i].trim()) {
|
|
last = searchLines[i]
|
|
break
|
|
}
|
|
}
|
|
|
|
return { first, last }
|
|
}
|
|
|
|
// Anchor-based search strategy
|
|
export function findAnchorMatch(
|
|
searchStr: string,
|
|
content: string[],
|
|
startIndex: number = 0,
|
|
confidenceThreshold: number = 0.97,
|
|
): SearchResult {
|
|
const searchLines = searchStr.split("\n")
|
|
const { first, last } = identifyAnchors(searchStr)
|
|
|
|
if (!first || !last) {
|
|
return { index: -1, confidence: 0, strategy: "anchor" }
|
|
}
|
|
|
|
let firstIndex = -1
|
|
let lastIndex = -1
|
|
|
|
// Check if the first anchor is unique
|
|
let firstOccurrences = 0
|
|
for (const contentLine of content) {
|
|
if (contentLine === first) {
|
|
firstOccurrences++
|
|
}
|
|
}
|
|
|
|
if (firstOccurrences !== 1) {
|
|
return { index: -1, confidence: 0, strategy: "anchor" }
|
|
}
|
|
|
|
// Find the first anchor
|
|
for (let i = startIndex; i < content.length; i++) {
|
|
if (content[i] === first) {
|
|
firstIndex = i
|
|
break
|
|
}
|
|
}
|
|
|
|
// Find the last anchor
|
|
for (let i = content.length - 1; i >= startIndex; i--) {
|
|
if (content[i] === last) {
|
|
lastIndex = i
|
|
break
|
|
}
|
|
}
|
|
|
|
if (firstIndex === -1 || lastIndex === -1 || lastIndex <= firstIndex) {
|
|
return { index: -1, confidence: 0, strategy: "anchor" }
|
|
}
|
|
|
|
// Validate the context
|
|
const expectedContext = searchLines.slice(searchLines.indexOf(first) + 1, searchLines.indexOf(last)).join("\n")
|
|
const actualContext = content.slice(firstIndex + 1, lastIndex).join("\n")
|
|
const contextSimilarity = evaluateSimilarity(expectedContext, actualContext)
|
|
|
|
if (contextSimilarity < getAdaptiveThreshold(content.length, confidenceThreshold)) {
|
|
return { index: -1, confidence: 0, strategy: "anchor" }
|
|
}
|
|
|
|
const confidence = 1
|
|
|
|
return {
|
|
index: firstIndex,
|
|
confidence: confidence,
|
|
strategy: "anchor",
|
|
}
|
|
}
|
|
|
|
// Main search function that tries all strategies
|
|
export function findBestMatch(
|
|
searchStr: string,
|
|
content: string[],
|
|
startIndex: number = 0,
|
|
confidenceThreshold: number = 0.97,
|
|
): SearchResult {
|
|
const strategies = [findExactMatch, findAnchorMatch, findSimilarityMatch, findLevenshteinMatch]
|
|
|
|
let bestResult: SearchResult = { index: -1, confidence: 0, strategy: "none" }
|
|
|
|
for (const strategy of strategies) {
|
|
const result = strategy(searchStr, content, startIndex, confidenceThreshold)
|
|
if (result.confidence > bestResult.confidence) {
|
|
bestResult = result
|
|
}
|
|
}
|
|
|
|
return bestResult
|
|
}
|