2025-03-12 21:39:29 +08:00

409 lines
13 KiB
TypeScript

import { compareTwoStrings } from "string-similarity"
import { closest } from "fastest-levenshtein"
import { diff_match_patch } from "diff-match-patch"
import { Change, Hunk } from "./types"
export type SearchResult = {
index: number
confidence: number
strategy: string
}
const LARGE_FILE_THRESHOLD = 1000 // lines
const UNIQUE_CONTENT_BOOST = 0.05
const DEFAULT_OVERLAP_SIZE = 3 // lines of overlap between windows
const MAX_WINDOW_SIZE = 500 // maximum lines in a window
// Helper function to calculate adaptive confidence threshold based on file size
function getAdaptiveThreshold(contentLength: number, baseThreshold: number): number {
if (contentLength <= LARGE_FILE_THRESHOLD) {
return baseThreshold
}
return Math.max(baseThreshold - 0.07, 0.8) // Reduce threshold for large files but keep minimum at 80%
}
// Helper function to evaluate content uniqueness
function evaluateContentUniqueness(searchStr: string, content: string[]): number {
const searchLines = searchStr.split("\n")
const uniqueLines = new Set(searchLines)
const contentStr = content.join("\n")
// Calculate how many search lines are relatively unique in the content
let uniqueCount = 0
for (const line of uniqueLines) {
const regex = new RegExp(line.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"), "g")
const matches = contentStr.match(regex)
if (matches && matches.length <= 2) {
// Line appears at most twice
uniqueCount++
}
}
return uniqueCount / uniqueLines.size
}
// Helper function to prepare search string from context
export function prepareSearchString(changes: Change[]): string {
const lines = changes.filter((c) => c.type === "context" || c.type === "remove").map((c) => c.originalLine)
return lines.join("\n")
}
// Helper function to evaluate similarity between two texts
export function evaluateSimilarity(original: string, modified: string): number {
return compareTwoStrings(original, modified)
}
// Helper function to validate using diff-match-patch
export function getDMPSimilarity(original: string, modified: string): number {
const dmp = new diff_match_patch()
const diffs = dmp.diff_main(original, modified)
dmp.diff_cleanupSemantic(diffs)
const patches = dmp.patch_make(original, diffs)
const [expectedText] = dmp.patch_apply(patches, original)
const similarity = evaluateSimilarity(expectedText, modified)
return similarity
}
// Helper function to validate edit results using hunk information
export function validateEditResult(hunk: Hunk, result: string): number {
// Build the expected text from the hunk
const expectedText = hunk.changes
.filter((change) => change.type === "context" || change.type === "add")
.map((change) => (change.indent ? change.indent + change.content : change.content))
.join("\n")
// Calculate similarity between the result and expected text
const similarity = getDMPSimilarity(expectedText, result)
// If the result is unchanged from original, return low confidence
const originalText = hunk.changes
.filter((change) => change.type === "context" || change.type === "remove")
.map((change) => (change.indent ? change.indent + change.content : change.content))
.join("\n")
const originalSimilarity = getDMPSimilarity(originalText, result)
if (originalSimilarity > 0.97 && similarity !== 1) {
return 0.8 * similarity // Some confidence since we found the right location
}
// For partial matches, scale the confidence but keep it high if we're close
return similarity
}
// Helper function to validate context lines against original content
function validateContextLines(searchStr: string, content: string, confidenceThreshold: number): number {
// Extract just the context lines from the search string
const contextLines = searchStr.split("\n").filter((line) => !line.startsWith("-")) // Exclude removed lines
// Compare context lines with content
const similarity = evaluateSimilarity(contextLines.join("\n"), content)
// Get adaptive threshold based on content size
const threshold = getAdaptiveThreshold(content.split("\n").length, confidenceThreshold)
// Calculate uniqueness boost
const uniquenessScore = evaluateContentUniqueness(searchStr, content.split("\n"))
const uniquenessBoost = uniquenessScore * UNIQUE_CONTENT_BOOST
// Adjust confidence based on threshold and uniqueness
return similarity < threshold ? similarity * 0.3 + uniquenessBoost : similarity + uniquenessBoost
}
// Helper function to create overlapping windows
function createOverlappingWindows(
content: string[],
searchSize: number,
overlapSize: number = DEFAULT_OVERLAP_SIZE,
): { window: string[]; startIndex: number }[] {
const windows: { window: string[]; startIndex: number }[] = []
// Ensure minimum window size is at least searchSize
const effectiveWindowSize = Math.max(searchSize, Math.min(searchSize * 2, MAX_WINDOW_SIZE))
// Ensure overlap size doesn't exceed window size
const effectiveOverlapSize = Math.min(overlapSize, effectiveWindowSize - 1)
// Calculate step size, ensure it's at least 1
const stepSize = Math.max(1, effectiveWindowSize - effectiveOverlapSize)
for (let i = 0; i < content.length; i += stepSize) {
const windowContent = content.slice(i, i + effectiveWindowSize)
if (windowContent.length >= searchSize) {
windows.push({ window: windowContent, startIndex: i })
}
}
return windows
}
// Helper function to combine overlapping matches
function combineOverlappingMatches(
matches: (SearchResult & { windowIndex: number })[],
overlapSize: number = DEFAULT_OVERLAP_SIZE,
): SearchResult[] {
if (matches.length === 0) {
return []
}
// Sort matches by confidence
matches.sort((a, b) => b.confidence - a.confidence)
const combinedMatches: SearchResult[] = []
const usedIndices = new Set<number>()
for (const match of matches) {
if (usedIndices.has(match.windowIndex)) {
continue
}
// Find overlapping matches
const overlapping = matches.filter(
(m) =>
Math.abs(m.windowIndex - match.windowIndex) === 1 &&
Math.abs(m.index - match.index) <= overlapSize &&
!usedIndices.has(m.windowIndex),
)
if (overlapping.length > 0) {
// Boost confidence if we find same match in overlapping windows
const avgConfidence =
(match.confidence + overlapping.reduce((sum, m) => sum + m.confidence, 0)) / (overlapping.length + 1)
const boost = Math.min(0.05 * overlapping.length, 0.1) // Max 10% boost
combinedMatches.push({
index: match.index,
confidence: Math.min(1, avgConfidence + boost),
strategy: `${match.strategy}-overlapping`,
})
usedIndices.add(match.windowIndex)
overlapping.forEach((m) => usedIndices.add(m.windowIndex))
} else {
combinedMatches.push({
index: match.index,
confidence: match.confidence,
strategy: match.strategy,
})
usedIndices.add(match.windowIndex)
}
}
return combinedMatches
}
export function findExactMatch(
searchStr: string,
content: string[],
startIndex: number = 0,
confidenceThreshold: number = 0.97,
): SearchResult {
const searchLines = searchStr.split("\n")
const windows = createOverlappingWindows(content.slice(startIndex), searchLines.length)
const matches: (SearchResult & { windowIndex: number })[] = []
windows.forEach((windowData, windowIndex) => {
const windowStr = windowData.window.join("\n")
const exactMatch = windowStr.indexOf(searchStr)
if (exactMatch !== -1) {
const matchedContent = windowData.window
.slice(
windowStr.slice(0, exactMatch).split("\n").length - 1,
windowStr.slice(0, exactMatch).split("\n").length - 1 + searchLines.length,
)
.join("\n")
const similarity = getDMPSimilarity(searchStr, matchedContent)
const contextSimilarity = validateContextLines(searchStr, matchedContent, confidenceThreshold)
const confidence = Math.min(similarity, contextSimilarity)
matches.push({
index: startIndex + windowData.startIndex + windowStr.slice(0, exactMatch).split("\n").length - 1,
confidence,
strategy: "exact",
windowIndex,
})
}
})
const combinedMatches = combineOverlappingMatches(matches)
return combinedMatches.length > 0 ? combinedMatches[0] : { index: -1, confidence: 0, strategy: "exact" }
}
// String similarity strategy
export function findSimilarityMatch(
searchStr: string,
content: string[],
startIndex: number = 0,
confidenceThreshold: number = 0.97,
): SearchResult {
const searchLines = searchStr.split("\n")
let bestScore = 0
let bestIndex = -1
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
const windowStr = content.slice(i, i + searchLines.length).join("\n")
const score = compareTwoStrings(searchStr, windowStr)
if (score > bestScore && score >= confidenceThreshold) {
const similarity = getDMPSimilarity(searchStr, windowStr)
const contextSimilarity = validateContextLines(searchStr, windowStr, confidenceThreshold)
const adjustedScore = Math.min(similarity, contextSimilarity) * score
if (adjustedScore > bestScore) {
bestScore = adjustedScore
bestIndex = i
}
}
}
return {
index: bestIndex,
confidence: bestIndex !== -1 ? bestScore : 0,
strategy: "similarity",
}
}
// Levenshtein strategy
export function findLevenshteinMatch(
searchStr: string,
content: string[],
startIndex: number = 0,
confidenceThreshold: number = 0.97,
): SearchResult {
const searchLines = searchStr.split("\n")
const candidates = []
for (let i = startIndex; i < content.length - searchLines.length + 1; i++) {
candidates.push(content.slice(i, i + searchLines.length).join("\n"))
}
if (candidates.length > 0) {
const closestMatch = closest(searchStr, candidates)
const index = startIndex + candidates.indexOf(closestMatch)
const similarity = getDMPSimilarity(searchStr, closestMatch)
const contextSimilarity = validateContextLines(searchStr, closestMatch, confidenceThreshold)
const confidence = Math.min(similarity, contextSimilarity)
return {
index: confidence === 0 ? -1 : index,
confidence: index !== -1 ? confidence : 0,
strategy: "levenshtein",
}
}
return { index: -1, confidence: 0, strategy: "levenshtein" }
}
// Helper function to identify anchor lines
function identifyAnchors(searchStr: string): { first: string | null; last: string | null } {
const searchLines = searchStr.split("\n")
let first: string | null = null
let last: string | null = null
// Find the first non-empty line
for (const line of searchLines) {
if (line.trim()) {
first = line
break
}
}
// Find the last non-empty line
for (let i = searchLines.length - 1; i >= 0; i--) {
if (searchLines[i].trim()) {
last = searchLines[i]
break
}
}
return { first, last }
}
// Anchor-based search strategy
export function findAnchorMatch(
searchStr: string,
content: string[],
startIndex: number = 0,
confidenceThreshold: number = 0.97,
): SearchResult {
const searchLines = searchStr.split("\n")
const { first, last } = identifyAnchors(searchStr)
if (!first || !last) {
return { index: -1, confidence: 0, strategy: "anchor" }
}
let firstIndex = -1
let lastIndex = -1
// Check if the first anchor is unique
let firstOccurrences = 0
for (const contentLine of content) {
if (contentLine === first) {
firstOccurrences++
}
}
if (firstOccurrences !== 1) {
return { index: -1, confidence: 0, strategy: "anchor" }
}
// Find the first anchor
for (let i = startIndex; i < content.length; i++) {
if (content[i] === first) {
firstIndex = i
break
}
}
// Find the last anchor
for (let i = content.length - 1; i >= startIndex; i--) {
if (content[i] === last) {
lastIndex = i
break
}
}
if (firstIndex === -1 || lastIndex === -1 || lastIndex <= firstIndex) {
return { index: -1, confidence: 0, strategy: "anchor" }
}
// Validate the context
const expectedContext = searchLines.slice(searchLines.indexOf(first) + 1, searchLines.indexOf(last)).join("\n")
const actualContext = content.slice(firstIndex + 1, lastIndex).join("\n")
const contextSimilarity = evaluateSimilarity(expectedContext, actualContext)
if (contextSimilarity < getAdaptiveThreshold(content.length, confidenceThreshold)) {
return { index: -1, confidence: 0, strategy: "anchor" }
}
const confidence = 1
return {
index: firstIndex,
confidence: confidence,
strategy: "anchor",
}
}
// Main search function that tries all strategies
export function findBestMatch(
searchStr: string,
content: string[],
startIndex: number = 0,
confidenceThreshold: number = 0.97,
): SearchResult {
const strategies = [findExactMatch, findAnchorMatch, findSimilarityMatch, findLevenshteinMatch]
let bestResult: SearchResult = { index: -1, confidence: 0, strategy: "none" }
for (const strategy of strategies) {
const result = strategy(searchStr, content, startIndex, confidenceThreshold)
if (result.confidence > bestResult.confidence) {
bestResult = result
}
}
return bestResult
}