FastGPT/src/pages/api/openapi/chat/vectorGpt.ts
2023-04-17 09:58:22 +08:00

226 lines
6.5 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import type { NextApiRequest, NextApiResponse } from 'next';
import { connectToDatabase, Model } from '@/service/mongo';
import {
httpsAgent,
openaiChatFilter,
systemPromptFilter,
authOpenApiKey
} from '@/service/utils/tools';
import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
import { ChatItemType } from '@/types/chat';
import { jsonRes } from '@/service/response';
import { PassThrough } from 'stream';
import { modelList, ModelVectorSearchModeMap, ModelVectorSearchModeEnum } from '@/constants/model';
import { pushChatBill } from '@/service/events/pushBill';
import { connectRedis } from '@/service/redis';
import { VecModelDataPrefix } from '@/constants/redis';
import { vectorToBuffer } from '@/utils/tools';
import { openaiCreateEmbedding, gpt35StreamResponse } from '@/service/utils/openai';
import dayjs from 'dayjs';
/* 发送提示词 */
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
let step = 0; // step=1时表示开始了流响应
const stream = new PassThrough();
stream.on('error', () => {
console.log('error: ', 'stream error');
stream.destroy();
});
res.on('close', () => {
stream.destroy();
});
res.on('error', () => {
console.log('error: ', 'request error');
stream.destroy();
});
try {
const {
prompts,
modelId,
isStream = true
} = req.body as {
prompts: ChatItemType[];
modelId: string;
isStream: boolean;
};
if (!prompts || !modelId) {
throw new Error('缺少参数');
}
if (!Array.isArray(prompts)) {
throw new Error('prompts is not array');
}
if (prompts.length > 30 || prompts.length === 0) {
throw new Error('prompts length range 1-30');
}
await connectToDatabase();
const redis = await connectRedis();
let startTime = Date.now();
/* 凭证校验 */
const { apiKey, userId } = await authOpenApiKey(req);
const model = await Model.findOne({
_id: modelId,
userId
});
if (!model) {
throw new Error('无权使用该模型');
}
const modelConstantsData = modelList.find((item) => item.model === model?.service?.modelName);
if (!modelConstantsData) {
throw new Error('模型初始化异常');
}
// 获取提示词的向量
const { vector: promptVector, chatAPI } = await openaiCreateEmbedding({
isPay: true,
apiKey,
userId,
text: prompts[prompts.length - 1].value // 取最后一个
});
// 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text
const similarity = ModelVectorSearchModeMap[model.search.mode]?.similarity || 0.22;
// 搜索系统提示词, 按相似度从 redis 中搜出相关的 q 和 text
const redisData: any[] = await redis.sendCommand([
'FT.SEARCH',
`idx:${VecModelDataPrefix}:hash`,
`@modelId:{${modelId}} @vector:[VECTOR_RANGE ${similarity} $blob]=>{$YIELD_DISTANCE_AS: score}`,
'RETURN',
'1',
'text',
'SORTBY',
'score',
'PARAMS',
'2',
'blob',
vectorToBuffer(promptVector),
'LIMIT',
'0',
'30',
'DIALECT',
'2'
]);
const formatRedisPrompt: string[] = [];
// 格式化响应值,获取 qa
for (let i = 2; i < 61; i += 2) {
const text = redisData[i]?.[1];
if (text) {
formatRedisPrompt.push(text);
}
}
// system 合并
if (prompts[0].obj === 'SYSTEM') {
formatRedisPrompt.unshift(prompts.shift()?.value || '');
}
/* 高相似度+退出,无法匹配时直接退出 */
if (
formatRedisPrompt.length === 0 &&
model.search.mode === ModelVectorSearchModeEnum.hightSimilarity
) {
return res.send('对不起,你的问题不在知识库中。');
}
/* 高相似度+无上下文,不添加额外知识 */
if (
formatRedisPrompt.length === 0 &&
model.search.mode === ModelVectorSearchModeEnum.noContext
) {
prompts.unshift({
obj: 'SYSTEM',
value: model.systemPrompt
});
} else {
// 有匹配或者低匹配度模式情况下,添加知识库内容。
// 系统提示词过滤,最多 2500 tokens
const systemPrompt = systemPromptFilter(formatRedisPrompt, 2500);
prompts.unshift({
obj: 'SYSTEM',
value: `${model.systemPrompt} 用知识库内容回答,知识库内容为: "当前时间:${dayjs().format(
'YYYY/MM/DD HH:mm:ss'
)} ${systemPrompt}"`
});
}
// 格式化文本内容成 chatgpt 格式
const map = {
Human: ChatCompletionRequestMessageRoleEnum.User,
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
};
const formatPrompts: ChatCompletionRequestMessage[] = prompts.map((item: ChatItemType) => ({
role: map[item.obj],
content: item.value
}));
// console.log(formatPrompts);
// 计算温度
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
// 发出请求
const chatResponse = await chatAPI.createChatCompletion(
{
model: model.service.chatModel,
temperature: temperature,
messages: formatPrompts,
frequency_penalty: 0.5, // 越大,重复内容越少
presence_penalty: -0.5, // 越大,越容易出现新内容
stream: isStream
},
{
timeout: 120000,
responseType: isStream ? 'stream' : 'json',
httpsAgent: httpsAgent(true)
}
);
console.log('api response time:', `${(Date.now() - startTime) / 1000}s`);
step = 1;
let responseContent = '';
if (isStream) {
const streamResponse = await gpt35StreamResponse({
res,
stream,
chatResponse
});
responseContent = streamResponse.responseContent;
} else {
responseContent = chatResponse.data.choices?.[0]?.message?.content || '';
jsonRes(res, {
data: responseContent
});
}
const promptsContent = formatPrompts.map((item) => item.content).join('');
pushChatBill({
isPay: true,
modelName: model.service.modelName,
userId,
text: promptsContent + responseContent
});
// jsonRes(res);
} catch (err: any) {
if (step === 1) {
// 直接结束流
console.log('error结束');
stream.destroy();
} else {
res.status(500);
jsonRes(res, {
code: 500,
error: err
});
}
}
}