2023-04-30 13:26:56 +08:00

181 lines
5.1 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import type { NextApiRequest, NextApiResponse } from 'next';
import { connectToDatabase } from '@/service/mongo';
import { getOpenAIApi, authChat } from '@/service/utils/auth';
import { axiosConfig, openaiChatFilter, systemPromptFilter } from '@/service/utils/tools';
import { ChatItemSimpleType } from '@/types/chat';
import { jsonRes } from '@/service/response';
import { PassThrough } from 'stream';
import { modelList, ModelVectorSearchModeMap, ModelVectorSearchModeEnum } from '@/constants/model';
import { pushChatBill } from '@/service/events/pushBill';
import { gpt35StreamResponse } from '@/service/utils/openai';
import { searchKb_openai } from '@/service/tools/searchKb';
/* 发送提示词 */
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
let step = 0; // step=1时表示开始了流响应
const stream = new PassThrough();
stream.on('error', () => {
console.log('error: ', 'stream error');
stream.destroy();
});
res.on('close', () => {
stream.destroy();
});
res.on('error', () => {
console.log('error: ', 'request error');
stream.destroy();
});
try {
const { chatId, prompt, modelId } = req.body as {
prompt: ChatItemSimpleType;
modelId: string;
chatId: '' | string;
};
const { authorization } = req.headers;
if (!modelId || !prompt) {
throw new Error('缺少参数');
}
await connectToDatabase();
let startTime = Date.now();
const { model, content, userApiKey, systemKey, userId } = await authChat({
modelId,
chatId,
authorization
});
const modelConstantsData = modelList.find((item) => item.chatModel === model.chat.chatModel);
if (!modelConstantsData) {
throw new Error('模型加载异常');
}
// 读取对话内容
const prompts = [...content, prompt];
// 使用了知识库搜索
if (model.chat.useKb) {
const { systemPrompts } = await searchKb_openai({
apiKey: userApiKey || systemKey,
isPay: !userApiKey,
text: prompt.value,
similarity: ModelVectorSearchModeMap[model.chat.searchMode]?.similarity || 0.22,
modelId,
userId
});
// filter system prompt
if (
systemPrompts.length === 0 &&
model.chat.searchMode === ModelVectorSearchModeEnum.hightSimilarity
) {
return res.send('对不起,你的问题不在知识库中。');
}
/* 高相似度+无上下文,不添加额外知识,仅用系统提示词 */
if (
systemPrompts.length === 0 &&
model.chat.searchMode === ModelVectorSearchModeEnum.noContext
) {
prompts.unshift({
obj: 'SYSTEM',
value: model.chat.systemPrompt
});
} else {
// 有匹配情况下system 添加知识库内容。
// 系统提示词过滤,最多 2500 tokens
const filterSystemPrompt = systemPromptFilter({
model: model.chat.chatModel,
prompts: systemPrompts,
maxTokens: 2500
});
prompts.unshift({
obj: 'SYSTEM',
value: `
${model.chat.systemPrompt}
${
model.chat.searchMode === ModelVectorSearchModeEnum.hightSimilarity
? `不回答知识库外的内容.`
: ''
}
知识库内容为: ${filterSystemPrompt}'
`
});
}
} else {
// 没有用知识库搜索,仅用系统提示词
if (model.chat.systemPrompt) {
prompts.unshift({
obj: 'SYSTEM',
value: model.chat.systemPrompt
});
}
}
// 控制总 tokens 数量,防止超出
const filterPrompts = openaiChatFilter({
model: model.chat.chatModel,
prompts,
maxTokens: modelConstantsData.contextMaxToken - 300
});
// 计算温度
const temperature = (modelConstantsData.maxTemperature * (model.chat.temperature / 10)).toFixed(
2
);
// console.log(filterPrompts);
// 获取 chatAPI
const chatAPI = getOpenAIApi(userApiKey || systemKey);
// 发出请求
const chatResponse = await chatAPI.createChatCompletion(
{
model: model.chat.chatModel,
temperature: Number(temperature) || 0,
messages: filterPrompts,
frequency_penalty: 0.5, // 越大,重复内容越少
presence_penalty: -0.5, // 越大,越容易出现新内容
stream: true,
stop: ['.!?。']
},
{
timeout: 40000,
responseType: 'stream',
...axiosConfig()
}
);
console.log('api response time:', `${(Date.now() - startTime) / 1000}s`);
step = 1;
const { responseContent } = await gpt35StreamResponse({
res,
stream,
chatResponse
});
// 只有使用平台的 key 才计费
pushChatBill({
isPay: !userApiKey,
chatModel: model.chat.chatModel,
userId,
chatId,
messages: filterPrompts.concat({ role: 'assistant', content: responseContent })
});
} catch (err: any) {
if (step === 1) {
// 直接结束流
console.log('error结束');
stream.destroy();
} else {
res.status(500);
jsonRes(res, {
code: 500,
error: err
});
}
}
}